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ABSTRACT Overweight and obesity are growing health problems in domestic cats,
increasing the risks of insulin resistance, lipid dyscrasias, neoplasia, cardiovascular disease,
and decreasing longevity. The signature of obesity in the feline gut microbiota has not
been studied at the whole-genome metagenomic level. We performed whole-genome
shotgun metagenomic sequencing in the fecal samples of eight overweight/obese and
eight normal cats housed in the same research environment. We obtained 271 Gbp of
sequences and generated a 961-Mbp de novo reference contig assembly, with 1.14 mil-
lion annotated microbial genes. In the obese cat microbiome, we discovered a signifi-
cant reduction in microbial diversity (P , 0.01) and Firmicutes abundance (P = 0.005), as
well as decreased Firmicutes/Bacteroidetes ratios (P = 0.02), which is the inverse of obese
human/mouse microbiota. Linear discriminant analysis and quantitative PCR (qPCR) vali-
dation revealed significant increases of Bifidobacterium sp., Olsenella provencensis,
Dialister sp.CAG:486, and Campylobacter upsaliensis as the hallmark of obese microbiota
among 400 enriched species, whereas 1,525 bacterial species have decreased abundance
in the obese microbiome. Phascolarctobacterium succinatutens and an uncharacterized
Erysipelotrichaceae bacterium are highly abundant (.0.05%) in the normal gut with over
400-fold depletion in the obese microbiome. Fatty acid synthesis-related pathways are
significantly overrepresented in the obese compared with the normal cat microbiome. In
conclusion, we discovered dramatically decreased microbial diversity in obese cat gut
microbiota, suggesting potential dysbiosis. A panel of seven significantly altered, highly
abundant species can serve as a microbiome indicator of obesity. Our findings in the
obese cat microbiome composition, abundance, and functional capacities provide new
insights into feline obesity.

IMPORTANCE Obesity affects around 45% of domestic cats, and licensed drugs for
treating feline obesity are lacking. Physical exercise and calorie restrictions are com-
monly used for weight loss but with limited efficacy. Through comprehensive analy-
ses of normal and obese cat gut bacteria flora, we identified dramatic shifts in the
obese gut microbiome, including four bacterial species significantly enriched and
two species depleted in the obese cats. The key bacterial community and functional
capacity alterations discovered from this study will inform new weight management
strategies for obese cats, such as evaluations of specific diet formulas that alter the
microbiome composition, and the development of prebiotics and probiotics that
promote the increase of beneficial species and the depletion of obesity-associated
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species. Interestingly, these bacteria identified in our study were also reported to
affect the weight loss success in human patients, suggesting translational potential
in human obesity.

KEYWORDS feline obesity, gut microbiota, Firmicutes-to-Bacteroidetes ratio,
Erysipelotrichaceae, Bifidobacterium, Dialister, Olsenella, Campylobacter

Acombination of excessive food intake and lack of physical exercise leads to an
expansion of adipose tissue in the body, resulting in metabolic dysregulation.

When excess body adipose tissue has accumulated to the extent that it has adverse
effects on health, it is termed obesity. Feline obesity is a major epidemic with a current
prevalence of around 45% (1–3) and is considered the second most common health
problem in domestic cats in developed countries (4). It is linked to many systemic
health conditions, including altered lipid profiles (5), insulin resistance (6), neoplasia,
urinary diseases (3), cardiovascular diseases (7), and reduced life span. There are no
available licensed drugs for treating feline obesity, and classic interventions for weight
loss such as calorie restrictions and physical exercise are often challenging and are ulti-
mately ineffective (8). Understanding the obese cat gut microbiota is necessary to facil-
itate the development of treatment strategies through dietary probiotics and gut
microbiota manipulations.

The gut microbiome is the entire collection of microorganisms in the gastrointesti-
nal tract. In humans, microorganisms are about 38 trillion in total, exceeding the num-
ber of human cells (9). The gut microbiota is an integral part of the body, affecting
many aspects of disease physiology, including rheumatoid arthritis (10), colorectal can-
cer (11, 12), cardiovascular disease (13), and inflammatory bowel disease (14, 15). Gut
microbiome composition and function are directly related to digestion, nutrient me-
tabolism, and assimilation, which play important modulative roles in total body adipos-
ity. The gut microbiota modulates obesity through food absorption and low-grade
inflammation (16, 17). In mice, changes in intestinal bacterial compositions and micro-
bial metabolites can cause increases in endotoxemia and further exacerbate obesity
and insulin resistance (18, 19). Studies in both humans and mice have shown that influ-
encing the gut microbiota, such as with fecal transplantation, or external chemicals or
drugs, can have favorable or unfavorable effects on fat gain (20–26). Conversely, being
overweight or obese can cause dysbiosis, often associated with low microbial diversity
and richness in gut microbiota (27–29). Many studies reported that the relative propor-
tions of microbes in the gut microbiota correspond to body weight in humans (30).
Obesity can alter the microbial composition in the gut, and reduced levels of
Bacteroidetes have been reported in obese versus lean members of twin pairs (29). The
reduction of Bacteroidetes in obese animals could be reversed through a calorie-re-
stricted diet (31).

To date, there are over 20 studies on the feline gut microbiota (32–54), all of which
used the 16S rDNA sequencing approach. Factors such as diets, pre-/probiotics, age, di-
arrhea, and other diseased states have been shown to influence gut microbiota com-
position (34, 35, 37, 55). One study examined the effect of obesity on the gut micro-
biome and found that the gut microbiome of lean cats was significantly different
(P , 0.05) from that of overweight and obese cats (32). Lean and obese cat gut micro-
biota were also reported to respond differentially to dietary protein and carbohydrate
ratio (48). These previous studies identified phylum and genus level changes in the
obese cat microbiome, but failed to discover bacterial species-level changes in the
feline gut microbiota. Another limitation is that these studies were often performed
using client-owned cats from diverse household environments, which diminished the
statistical power to detect microbiome differences. Last but not least, fecal sample col-
lection methods also affect the results of microbiome analysis. Many previous studies
collected feces from litterboxes, which could be contaminated, and the microbiota
composition can shift after the fecal sample left the intestine. To address these issues

Microbiome Correlates of Feline Obesity Microbiology Spectrum

May/June 2022 Volume 10 Issue 3 10.1128/spectrum.00837-22 2

https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.00837-22


and obtain comprehensive genome coverage for bacteria composition at the species level
(56), whole-genome shotgun (WGS) metagenomic sequencing was performed in normal
versus obese cats, using fecal samples collected from the rectum and descending colon by
a fecal loop. We assembled the first cat reference microbial contigs, predicted and anno-
tated taxonomy identity and microbial genes, and discovered and validated significant
changes in species abundance in obese versus normal cat gut microbiota. Our results pro-
vide a deeper understanding of the feline gut microbiota and its link to body conditions,
which shed light on the microbiome basis of feline obesity and will inform the develop-
ment of weight loss therapy using probiotics and fecal transplantation.

RESULTS
A comprehensive characterization of feline gut microbiota using deep WGS

metagenomic data. The body condition score (BCS) and body weight were measured
for cats in this study (Table S1). We collected 16 fecal samples from eight overweight/
obese cats (BCS $ 7) and eight normal cats (BCS = 5) maintained in the same research
environment (Fig. 1A and Fig. S1; see Materials and Methods). WGS metagenomic sequenc-
ing of the fecal DNA generated 1.8 billion 150 bp reads (or 271 Gbp reads). Of these, 2.21%
are adapter sequences or low-quality bases, 15.21% are host sequences from the feline ge-
nome, and 0.04% are viral reads (Table S2). After removing these non-microbial reads, we
performed de novo metagenomic assembly using 16 samples combined for a feline refer-
ence gut microbiome. The non-redundant assembly contains 355,573 microbial contigs,
with a total length of 961,105,174 bp (N50 = 11,097 bp). When filtered metagenomic
sequences were aligned to this feline gut microbial reference assembly for each sample,
the average mapping percentage was 82.7% (Table S2) with a mean coverage depth of
282�. A total of 1.14 million non-redundant microbial genes were identified from the refer-
ence contigs. Rarefaction analysis of non-redundant genes revealed a curve approaching
saturation (Fig. S2A). The number of bacterial species discovered in these metagenomes
was also saturated, suggesting sufficient sequencing coverage and samples size (Fig. S2B).

High blood glucose levels and insulin resistance were associated with feline
obesity. The eight obese cats in this study were on a similar diet to lean cats, based on
major nutrients and fiber content (see Materials and Methods). Before they became
obese, their body weight ranged from 3.20 to 4.10 kg (Table S1). After ad libitum feed-
ing, these animals had a mean body weight of 6.20 kg at the time of fecal sample col-
lection (Table S1), which was significantly heavier (Fig. 1B; P , 0.001, Mann-Whitney U
test). Cats in the normal body weight group were from the Scott-Ritchey Research
Center breeding colony housed in the same facility, and they were significantly lighter

FIG 1 Body weight, body condition score, serum glucose level, and insulin resistance parameters for
obese cats. (A) Bar plot of the body condition scores of normal and obese cats in this study. (B) Box
plot of the body weight of normal cats, obese cats when they were lean, and obese cats at the time
of fecal and blood sample collection. (C) Box plot of the blood glucose scores (left) and homeostatic
model assessment for insulin resistance (HOMA-IR) scores (right) of obese cats at collection.
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than the obese cats at the time of fecal sample collection (Fig. 1B; P , 0.001, Mann-
Whitney U test). Blood glucose levels of these obese cats were 192.4 6 59.3 mg/dL
(ranging from 127 to 285 mg/dL), which were all above the reference interval for cat
blood glucose levels determined by Auburn University College of Veterinary Medicine
Clinical Pathology Laboratory (Table S3 and Fig. 1C). Serum insulin levels were also
measured, and the homeostasis model assessment of insulin resistance (HOMA-IR) was
3.16 6 0.72 (ranging from 2.44 to 3.89; Fig. 1C), which were also higher than the popu-
lation-based reference interval of HOMA-IR in healthy lean cats (0.4;2.1) (6). Therefore,
the eight obese cats had significantly elevated blood glucose levels with demonstrat-
able insulin resistance at the time of fecal sample collection.

Lack of significant sex or age effects on gut microbiome within the normal cat
group. In the normal cat group in this research, four male and four female participants
were included, with ages ranging from 4 months to 6 years (Table S2). To determine
whether there were significant differences in the microbiome composition between
sex and age groups, we performed principal coordinates analysis (PCoA) and discov-
ered no significant effect of sex (Fig. S3A; P = 0.473, PERMANOVA test) or age (Fig. S3B,
P = 0.468, PERMANOVA test) on the cat gut microbiome composition. Compared with
the obese cat microbiota from 6-year males, the normal cats formed a cluster, which
was well separated from the obese cat microbiota (Fig. 2C; P = 0.001, PERMANOVA
test). These results justified the inclusion of these eight cats in the normal body weight
group.

Significant reduction in microbial diversity in obese cat gut microbiota. A total
of 92.6% of the cat gut microbial contigs were taxonomically classified at the super-
kingdom level, among which bacteria account for 99.5%, with the remaining 0.5%
from archaea and viruses. At lower taxonomy levels, 61.7% and 54.7% of the reference
contigs were assigned to genus and species, respectively (Data set S1 and S2). Alpha
diversity measured by the Shannon index showed a significant reduction in obese cat
microbiome compared to normal cats, at the species level (Fig. 2A; P = 0.009, Mann-
Whitney U test) and genus level (Fig. 2B; P = 0.006, Mann-Whitney U test). This result
indicated a substantial reduction in gut microbiome complexity in obese cats com-
pared with normal cats, suggesting dysbiosis in the obese microbiota. PCoA plot of
beta diversity between normal and obese cat gut microbiomes using Bray-Curtis dis-
tance showed significant separation between these two groups at the species level
(Fig. 2C; P = 0.001, PERMANOVA test). The diversity analyses identified distinct patterns
of gut microbiota in obese cats and normal cats.

Phylum-level characterization of feline gut microbiota revealed a significantly
lower Firmicutes-to-Bacteroidetes ratio in obese cats. Among the assembled micro-
bial contigs, 87.2% were taxonomically classified at the phylum level (Data set S3). Almost
98% of the microbes belong to the top 5 phyla, including Firmicutes, Bacteroidetes,
Actinobacteria, Proteobacteria, and Fusobacteria (Fig. 2D). The most dominant phylum in
normal cat gut microbiota was Firmicutes (47.4%), and the second was Bacteroidetes
(27.1%), which was consistent with previously reported in 16S rDNA metagenomic studies
(53) (63.3% Firmicutes and 27.6% Bacteroidetes; Fig. S4A). In obese cats, the most abun-
dant phylum was Bacteroidetes (40.9%), followed by Firmicutes (27.9%) (Fig. 2E). This
dramatic shift from Firmicutes to Bacteroidetes resulted in a significantly lower Firmicutes-
to-Bacteroidetes ratio (2.10 to 0.94) in obese cat microbiota (Fig. 2F to H; P = 0.021, Mann-
Whitney U test). Another phylum, Fusobacteria, which accounted for 0.3% of the normal
gut microbiome, was also depleted in obese cats (Fig. 2I; P-adj = 0.002, Mann-Whitney
U test). No significant changes were detected at the phylum level for Proteobacteria or
Actinobacteria (Fig. 2J–K; P-adj. 0.05, Mann-Whitney U test).

The top 20 most abundant bacterial genera distinguish the normal and obese
cat gut microbiota. The top 20 genera accounted for approximately 70% of total
abundance (Table S4 and Data set S1). The eight normal and eight obese cat micro-
biomes formed two distinct groups when unsupervised clustering was performed
using the relative abundance of the top 20 genera (Fig. 3A), indicating microbial com-
position differences occurred at the most abundant genera level. Prevotella was the
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most abundant genus (24.3%; Fig. 3A and B and Table S4 and S5), and the relative pro-
portions of the top 20 genera were highly correlated with the previous 16S rDNA
sequencing studies (Fig. S4B; Spearman’s r = 0.703, P = 0.003, Spearman’s Rank
Correlation test). Of the top 5 genera, Bacteroides increased in the obese cat gut

FIG 2 Significant changes of microbial diversity and phylum-level composition in cat gut microbiota. (A to B) Box plots of alpha diversity in normal (green)
and obese (yellow) cat microbiota at the species (A) level and genus (B) level, measured using the Shannon index. (C) The PCoA plots of beta diversity
between normal and obese rectum microbiota using Bray-Curtis distance. Statistical significance was assessed using permutational multivariate analysis of
variance (PERMANOVA). (D) Bar plot of phylum-level relative frequency in normal and obese cat microbiota. (E) Pie charts of the phylum-level composition
in normal and obese cat gut microbiota. (F) Bar plot of the Firmicutes-to-Bacteroidetes ratios in normal and obese cat gut microbiota. (G to K) Box plots of
frequency for the five most abundant phyla: Firmicutes (G), Bacteroidetes (H), Fusobacteria (I), Proteobacteria (J), and Actinobacteria (K). Statistical
significance was determined by the Mann-Whitney U test.
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microbiota with a marginal statistical significance (Fig. 3C; P-adj = 0.059, Mann-
Whitney U test), which may explain the overrepresentation of Bacteroidetes at the phy-
lum level (Fig. 2E). Two Firmicutes genera were significantly altered in the obese cat
gut microbiome: Lactimicrobium and Phascolarctobacterium accounted for 0.87% and
0.75% respectively in normal cats, but were not found (,0.0005%) in obese cats
(P-adj = 0.006; Fig. 3C and Table S6). This result was consistent with the decreased
abundance of Firmicutes in the obese microbiome at the phylum level (Fig. 2E). The
Prevotella-to-Bacteroides ratio, which was reported to predict body weight and fat loss
potential in humans (57), showed no significant change in obese and normal cat gut
microbiota (Fig. 3D; P. 0.05, Mann-Whitney U test).

Linear discriminant analysis revealed the most featured bacterial families,
genera, and species in normal versus obese cat gut microbiota. To identify the fea-
tured taxa associated with obesity, we performed linear discriminant analysis (LDA) on

FIG 3 Top 20 abundant bacterial genera and species in cat gut microbiota, and their relationship to cat obesity. (A, B) Heatmap of relative frequency for
the top 20 most abundant bacteria genera (A) and species (B). The taxa were rank-ordered with the most abundant taxon on the top. (C). Box plots of
relative frequency for three top 20 genera that exhibit significant abundance differences between normal and obese cat gut microbiota: Lactimicrobium,
Phascolarctobacterium, and Bacteroides. (D). Bar plot of Prevotella-to-Bacteroides ratios in normal and obese cat gut microbiota.
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microbial abundance profiles at the family, genus, and species levels. At the family level
(Data set S4), Bifidobacteriaceae was the only featured family in obese cat gut microbiota
(LDA . 3.0), whereas 10 families were featured in the normal microbiome, including
Lachnospiraceae, Clostridiaceae, Acidaminococcaceae, Eubacteriaceae, Erysipelotrichaceae,
Helicobacteraceae, Peptostreptococcaceae, Lactobacillaceae, Oscillospiraceae, and Enterobac-
teriaceae (Fig. 4A). At the genus level, Bifidobacterium and Dialister were the most featured
obese genera to distinguish from normal cat microbiota (Fig. 4B). The normal cat micro-
biome featured 15 genera, 14 of which belonged to the most featured families except

FIG 4 Significant differences in taxonomic abundance that discriminate normal and obese cat gut microbiome at the family, genus, and species levels.
(A to C) Linear discriminant analysis (LDA) scores of top featured microbial families (A), genera (B), and species (C) in normal (green) and obese (yellow) cat
gut microbiota. Taxa with an LDA score greater than 3.0 were included in these plots. (D) Heatmaps of the relative frequency for significantly (FDR , 0.10)
altered genera in normal (green) and obese (yellow) cat gut microbiota. Genera with an average frequency of at least 0.1% and a minimum absolute value
of log2 fold change (log2FC) of 2 were included in the plot. (E) High abundant bacterial species (relative abundance . 0.5%) with high-fold change (.16)
between normal (green) and obese (yellow) cat gut microbiota. Four species enriched in obese microbiota (HAHFC-obese) and two species enriched in
normal gut microbiota (HAHFC-normal) were shown in the heatmap.
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Succinatimonas, in the family of Succinivibrionaceae (Fig. 4A and B). The significance was
driven by Succinatimonas CAG:777, which was the second most featured species (Fig. 4C).
We identified 11 featured bacteria species in the obese microbiome (LDA score . 3;
Fig. 4C), including seven Actinobacteria in the genera of Olsenella, Bifidobacterium,
Collinsella, two Bacteroidetes (Phocaeicola), a Firmicutes species Dialister sp. CAG486, and a
Proteobacteria Campylobacter upsaliensis. In contrast, 11 Firmicutes and three Proteobac-
teria species were featured in the normal gut microbiome (Fig. 4C), including the species in
the top 20 genera we identified in Fig. 3A. Our results further confirmed that the normal
and obese cat gut microbiota have distinct taxonomical signatures.

To determine the degree of abundance changes in the obese microbiome, we per-
formed pairwise nonparametric tests to identify significantly altered taxa based on rel-
ative abundance (see Materials and Methods). At a false discovery rate (FDR) of 10%
and relative abundance of 0.5% or higher, 17 genera have a log2 fold change greater
than 2 (Fig. 4D). Also found in the list were 14/17 significant featured genera with
LDA score . 3 (Fig. 4B), and they were the most important genera that discriminate
between normal and obese cat gut microbiomes. High-abundance, high-fold change
(HAHFC) marker species were filtered according to the criteria of 16-fold change and
average abundance of 0.5% or higher. Six bacterial species were selected for further
analysis and validation (Fig. 4E).

MAG of the most featured species in LDA analysis - a previously uncharacterized
Erysipelotrichaceae bacterium AU001MAG. The most featured species in the normal
gut microbiome (LDA score. 4; Fig. 4C) was initially annotated as Lactimicrobium mas-
siliense (Fig. 3B), and its reference genome sequenced strain was discovered in human
breast milk from a healthy lactating mother (58). However, when the metagenomic
reads were aligned to its reference assembly (GCA_900343155), the mapping rate was
poor with only 82% average nucleotide identity, suggesting that this OTU in the cat
gut microbiome was a different uncharacterized species in the same family of
Erysipelotrichaceae (59). The metagenomic reads from this novel species were also
misannotated as another closely related Erysipelotrichaceae species Bulleidia sp. zg-
1006 (78% sequence identity). Using the metagenomic assembly approach, we
assembled a MAG genome of 1,798,709 bp in length, consistent with a single species
(123 contigs with N50 = 25,047 bp and 1,657 protein-coding genes annotated). The
checkM genome completeness was 96.2% (Fig. 5A), which was comparable with the
two related species Lactimicrobium massiliense (99.1%) and Bulleidia sp. zg-1006
(86.7%). We concluded that the MAG assembly of this species was nearly complete and
named it Erysipelotrichaceae bacterium AU001MAG. This species was also the most
enriched species in the normal gut microbiome (log2FC = 10.8, FDR = 0.01, Mann-
Whitney U test, same below; Fig. 4C, 6A, and Table S7), with an average depth of .200
across the entire genome in the normal microbiome but zero coverage in the obese
microbiome (Fig. 5B). Erysipelotrichaceae bacterium AU001MAG was the second most
abundant bacterial species in the cat gut microbiome (3.1% in the normal micro-
biome), just trailing the most abundant species Prevotella copri (12.9%; Table S5). Gene
annotation-based syntenic analysis revealed that Erysipelotrichaceae bacterium
AU001MAG contigs could be anchored to ;2/3 of the Lactimicrobium massiliense ge-
nome, and most of the gene orders were conserved (Fig. 5C), suggesting that
Lactimicrobium massiliense was the closest genome-sequenced species in the NCBI
database. In contrast, Bulleidia sp. zg-1006 had fewer syntenic regions and more ge-
nome rearrangement events (Fig. 5C).

Hallmark of the obese cat gut microbiome—dramatic increases in abundance
of Bifidobacterium sp., Dialister sp., Olsenella provencensis, and Campylobacter
upsaliensis. A total of 400 bacteria species were significantly enriched in the obese cat
gut microbiome, at an FDR of 10% and log2 fold change of 2 or more (Data set S5). Of
these, many had an extremely low relative abundance in both groups, which were
unlikely to be relevant to the disease. Eighteen obese-enriched species had a relative
abundance of 0.05% or higher in the obese microbiome (Table S8), including nine
Actinobacteria, four Bacteroidetes, four Firmicutes, and one Proteobacteria. Among
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them, four species had high abundance in the obese cat gut microbiome (.0.5%) with
extremely high fold increase (fold change .16), which were defined as HAHFC-obese spe-
cies (Fig. 4E and Fig. 7). As a species in one of the two most featured genera in the obese
microbiome (Fig. 4B), Dialister sp. CAG:483 accounted for less than 0.001% in the normal
microbiome and 1.935% in the obese microbiome, with an over 1,500-fold increase
(FDR = 0.04; Table S8). Dialister is a Firmicutes genus in the class of Negativicutes. Although
we observed an overall reduction of Firmicutes in obese cat gut microbiota (Fig. 2E), the
proportion of Negativicutes in Firmicutes increased from 14% to 20%, as shown in the
Krona plot (Fig. 6A), which was partly driven by a dramatic increase of the Dialister genus
from 0.003% to 7% in Firmicutes in the obese cat gut microbiome (Fig. 6A).

The number of Actinobacteria species dominated the obese cat gut microbiome
enriched species (Table S8). Bifidobacterium adolescentis is the second most enriched spe-
cies (FDR = 0.02, LDA score . 4; Fig. 4C and E) with a fold change of over 50, accounting
for 2.11% of the obese cat gut microbiome (Table S8 and Fig. 7). Bifidobacterium was the
other featured genus in the obese cat gut microbiome, and six species were significantly
overrepresented (log2FC. 1.5, FDR, 0.10), including B. adolescentis, B. longum, B. pseudo-
longum, B. pullorum, B. pullorum subsp. Gallinarum, and B. pullorum subsp. Saeculare (Fig. S5
and Data set S1). Collectively, these species caused an increase of the Bifidobacterium ge-
nus and the Bifidobacteriaceae family from 10% to 32% in Actinobacteria (Fig. 6B), serving
as a major signature of the obese cat gut microbiome (Fig. 4A, B). The other two HAHFC-
obese species were Olsenella provencensis (Actinobacteria) and Campylobacter upsaliensis
(Proteobacteria). Olsenella provencensis was the most featured species (Fig. 4C, E), with a
20-fold increase in the obese microbiome from 0.11% to 2.27% (Table S8 and Fig. 7). The

FIG 5 MAG genome quality assessment, normal and obese microbiota coverage, and syntenic analysis of the most featured species in obese cat
gut microbiome, Erysipelotrichaceae bacterium AU001MAG. (A) Genome completeness of Lactimicrobium massiliense, Bulleidia sp. Zg-1006, and
Erysipelotrichaceae bacterium AU001MAG assessed by checkM, showing the fraction of single-copy, missing, and contaminated genes. (B) Sliding
window plot of the average coverage depth of Erysipelotrichaceae bacterium AU001MAG in normal (green) and obese (yellow) metagenomic data.
(C) Syntenic region plot of Erysipelotrichaceae bacterium AU001MAG with its two most related species, Lactimicrobium massiliense and Bulleidia sp.
Zg-1006.
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FIG 6 Krona plots reflecting the phylogenetic relationship and composition changes in Firmicutes, Actinobacteria, and Proteobacteria. Annotated taxonomy
units within the phyla of Firmicutes (A), Actinobacteria (B), and Proteobacteria (C) were visualized in terms of relative abundance and taxonomic hierarchy
for normal (left) and obese (right) cat gut microbiome. Different taxonomic terms are color-coded, and the composition percentages are labeled at the
genus level (A, B) or the species level (C). The area in the chart is proportional to the relative abundance. The proportions of each phylum in the normal
and obese microbiome were represented in a pie chart in the center of the circle.
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Olsenella genus was also overrepresented in the obese cat gut microbiome (Fig. 6B).
Campylobacter upsaliensis is a human pathogen found globally, associated with self-limit-
ing diarrhea in companion animals and humans (60, 61). As a featured species in the obese
microbiome (Fig. 4C), the abundance of C. upsaliensis is extremely low in the normal micro-
biome (0.020%), but a 25-fold increase was observed in the obese microbiome (Fig. 4E, 6C,
and Table S8).

Hallmark of the obese cat gut microbiome—depletion of two highly abundant
species in the normal gut microbiome, Erysipelotrichaceae bacterium AU001MAG,
and Phascolarctobacterium succinatutens. The two top 20 genera that displayed signif-
icant differential abundance in normal versus obese microbiome (Fig. 3A and C) were
driven by two HAHFC-normal species, Erysipelotrichaceae bacterium AU001MAG (initially
annotated as Lactimicrobium massiliense) and Phascolarctobacterium succinatutens (Fig. 4E).
They were also featured in the linear discriminant analysis at species (Fig. 4C), genus
(Fig. 4B), and family levels (Erysipelotrichaceae and Acidaminococcaceae, respectively;
Fig. 4A). Erysipelotrichaceae bacterium AU001MAG accounted for 3.1% of the normal gut
microbiome, with an over 1,000-fold reduction in the obese microbiome (log2FC = 10.79,

FIG 7 Quantitative PCR validation of seven indicator bacterial species enriched or depleted in the obese cat gut microbiome. (A) Box plots of log10 scale
qPCR relative abundance of Prevotella copri (control), Olsenella provencensis, Bifidobacterium adolescentis, Dialister sp.CAG:486, Campylobacter upsaliensis,
Erysipelotrichaceae bacterium AU001MAG, Phascolarcobacterium succinatutens, and Campylobacter helveticus in normal (green) and obese (yellow) samples.
(B) Heatmap of relative frequency for the top 20 most abundant Campylobacter species. (C) Box plot of log10 scale relative abundance ratio of
Campylobacter upsaliensis over Campylobacter helveticus in normal (green) and obese (yellow) cat gut microbiome.
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FDR = 0.01; Fig. 6A and Table S7). P. succinatutens, another highly abundant Firmicutes in
the normal microbiome (0.62%), had a ;400-fold decrease in the obese microbiome
(log2FC = 8.57, FDR = 0.01; Fig. 6A and Table S7). The depletion of these two species is a
hallmark of microbiome alterations in the obese cat gut microbiome.

Distinct metabolic pathways and CAZy families in normal and obese cat gut
microbiota. At the microbial metabolic pathway level (Data set S7), we identified 10
pathways significantly enriched in abundance in the obese cat gut microbiome
(log2FC . 1.5, FDR , 0.1), while 11 pathways were significantly depleted (log2FC ,

21.5, FDR , 0.1; Data set S7). Among the obese microbiome enriched pathways, eight
out of 10 were biosynthesis pathways. In sharp contrast, nine of the 11 obese micro-
biome depleted pathways were involved in degradation and fermentation (Fig. 8A).
Overrepresented pathways in the obese microbiome included the biosynthesis of fatty
acids (stearate, palmitoleate, oleate, and oxononanoate), the biosynthesis of biotin,
acyl-carrier protein and nucleotide sugar CMP-legionaminate, as well as the saturated
fatty acid elongation pathways. These pathways were mainly related to lipid biosynthe-
sis. On the contrary, the normal microbiome was enriched for three degradation and
two fermentation terms (Fig. 8A). Methylcitrate cycle I and II, as well as the biosynthesis
of glutamine and arginine amino acids were also enriched compared with the obese
cat gut microbiome (Fig. 8A).

As an important aspect of microbiome function, carbohydrate-active enzymes
(CAZymes) are responsible for the synthesis and breakdown of complex carbohydrates in
the cat gut microbiome. Based on the protein sequence homology to the CAZy database,
we detected 105 CAZy families (Data set S8), which were assigned to 51 glycoside hydro-
lases (GHs), 38 glycosyltransferases (GTs), seven carbohydrate-binding modules (CBMs), six
polysaccharide lyases (PLs), two carbohydrate esterases (CEs), and one auxiliary activities
(AA). Overall, a larger number of CAZyme encoding genes were characterized in the nor-
mal gut microbiome compared to the obese microbiome, but the proportion of CAZymes
in all annotated genes was higher in the obese microbiome. A total of 1.26% of the anno-
tated genes in the obese cat gut microbiome were CAZyme encoding genes, which was
significantly higher (P = 0.01, Mann-Whitney U test) than the proportion of CAZymes in the
normal microbiome (1.19%; Fig. S6A). When taxonomy abundances of CAZymes were
measured by counts per million (CPM mapped reads), Firmicutes and Bacteroidetes were
most abundant in CAZymes, accounting for 77.5% of all CAZyme abundance (Fig. 8B). In
the obese cat gut microbiome, a significant increase of CAZyme abundance originated
from Bacteroidetes was observed, whereas Firmicutes CAZymes were significantly
decreased (P , 0.01; Fig. 8B), which was consistent with the microbial composition
changes at the phylum level (Fig. 2E). The top 6 CAZyme-encoding genera accounted for
32.2% of all CAZyme encoding genes, including Bacteroides (8.15%), Clostridium (5.83%),
Prevotella (5.04%), Blautia (5.01%), Collinsella (4.46%), and Bifidobacterium (3.67%; Fig. S6B).

By comparing the relative abundance of CAZyme families between normal and obese
microbiomes, we discovered that in the obese cat gut microbiome, Firmicutes were signifi-
cantly less in GHs, GTs, CBMs, PLs, and CEs, whereas Bacteroidetes were significantly
enriched for GHs, PLs, and CEs (Fig. 8B). Actinobacteria were also higher in GHs, GTs, CBMs,
and CEs in the obese microbiome (Fig. 8B), suggesting a potential contribution of the car-
bohydrate metabolism primarily in the obese cat gut microbiome. Among the 63 highly
abundant CAZy families (CPM. 500), five enzymes had a log2 fold change of 1.5 or higher.
GT25 (log2FC = 21.62) and CBM50 (log2FC = 21.69) were significantly decreased in obese
cat gut microbiome (FDR , 0.05). Three glycoside hydrolases, GH28 (log2FC = 3.47), GH19
(log2FC = 1.92), and GH116 (log2FC = 1.53), were upregulated in the obese cat gut micro-
biome with marginal significance.

DISCUSSION
Feline gut microbiota composition—similarity to canine and human microbiome

and consistency between WGS and 16S rDNA data. To our best knowledge, we report
here the first metagenomic assembly of the feline gut microbiome using WGS metage-
nomic approaches. In normal lean cat gut microbiomes, Firmicutes, Bacteroidetes,
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FIG 8 Significantly altered metabolic pathways and CAZy families in obese and normal cat gut microbiota. (A) Heatmap of the relative frequencies for
significantly (FDR , 0.10) altered microbial metabolic pathways in normal (green) and obese (yellow) cat gut microbiota. Pathways with a minimum
absolute value of log2 fold change (log2FC) of 1.5 were included in the plot. (B) Bar plots of percentages for phyla to which CAZyme genes from different
CAZy families in normal (green) and obese (yellow) cat gut microbiota belong. (C) Line plot of CPM (mapped reads) at log2 scale for most abundant CAZy
families (CPM . 10) in normal (green) and obese (yellow) cat gut microbiota. CAZy families with a minimum absolute value of log2FC of 1.5 were denoted
in red.
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Actinobacteria, Proteobacteria, and Fusobacteria were the top 5 most abundant phyla,
which were also the top 5 phyla of the human and dog gut microbiome in the same
order (62–64). Compared with a previous 16S rDNA study of cat gut microbiome in
2017 (53), the taxonomy abundance quantified in this study has a high correlation
when the top 5 phyla and the top 20 most abundant genera were examined, suggest-
ing that the composition of the feline gut microbiome was stable in different cat popu-
lations under similar but slightly different standard diet (Mars Petcare diet with 39.8%
protein, 12.5% fat, 38.3% carbohydrate, and 2.3% crude fiber was used in Fischer
2017). This also serves as a proof of principle of our WGS metagenomic study.

The first cat gut microbiome contigs assembly and microbial gene catalog
provided sequence references and information of sufficient samples size for
future studies. In this study, we assembled 234 Gbp of high-quality microbial reads
from a total of 16 metagenomes and generated a de novo assembly of the feline gut
microbiome. The non-redundant contigs length was 961 Mbp in total, with 1.14 million
predicted microbial genes.

Rarefaction analyses found that both the number of bacterial species and microbial
genes were .90% saturated when n . 5 samples were included, indicating that a sample
size of n = 6 is sufficient in future WGS metagenomic analysis of cat gut microbiomes. A
sample size larger than n = 6 would only have marginal benefit in identifying additional
taxa. The result suggested that the sample size in this study (n = 6 for each group) is suffi-
cient and the reference assembly with 16 metagenomes has excellent completeness. On
average, 83% of the metagenomic reads were aligned to our reference assembly, which is
comparable with the human gut microbiome reference genome (65). Compared with the
canine gut microbiome with 1.25 million predicted microbial genes (66), there were 9%
fewer non-redundant genes in the cat gut microbiome. A total of 95.9% microbial genes in
cat gut catalog had a phylum-level annotation, and genus/species level annotations were
available for 68.9% and 62.7% of genes. The feline gut microbial gene catalog served as a
comprehensive annotation set for functional studies of the microbiome.

Potential confounding factors in comparing normal versus obese cat microbiomes.
In humans and mice, sex, age, and diet can significantly affect the gut microbiome compo-
sitions. The gut microbiota associations with feline obesity had been studied in the context
of age, diet, neutering, and diabetic status (32, 48, 53, 54). In all four independent studies,
obese status was discovered to influence the cat gut microbiome, but no significant effects
of age, sex, diet, or neutering status were detected in previous feline 16S rDNA studies by
multiple research groups. In a 2016 study using 16S rDNA PCR analysis of fecal samples
from shelter cats, no significant associations were identified between bacterial groups and
sex or neutering status (32). The cats were on various diets and of diverse age groups (16
cats between 10-week and 1-year, 41 between 1-year and 5-year, and 20 of unknown
age). Another study in 2019 contrasting the microbiomes of diabetic and control cats
found no effect of breed, sex, or age on the gut microbial communities (54). In a 2020
study comparing lean and overweight cats, no significant differences were discovered in
fecal microbiomes due to sex or age or different diet groups (48). Another study published
in 2017 also found no significant effects of sex or age on cat gut microbiome in adult cats
(53). In this study, the obese group consists of eight 6-year-old male cats. For the normal
body weight group, we enrolled three 6-year-old cats to match the obese group; two 4-
month-old cats and three 8-month-old cats were also included to make it a balanced com-
parison. No significant differences due to age or sex were detected according to permuta-
tional multivariate analysis of variance, which was consistent with all previous 16S rDNA
studies (32, 48, 53, 54). The normal and obese cats were on two different brands of stand-
ard adult cat food with similar nutritional compositions. There could be subtle gut micro-
biome changes due to the slight differences in the diet, but none of the minor variations
between the diet are sufficient to explain the dramatic microbiome composition shifts
observed between normal and obese groups. Consistent with this interpretation, the pre-
vious 16S rDNA studies confirmed that diets with similar nutrient ingredients did not affect
the cat gut microbiota (32, 48), and cross-comparison between our normal cat group and
the Fischer 2017 16S rDNA study revealed highly correlated microbial genera composition
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(Fig. S4B), despite the differences in diets. Therefore, it is extremely unlikely standard diets
with similar nutrients will cause 100-fold changes in bacterial composition observed in our
study, but it is still a potential limitation of this research and might decrease the statistical
power. Future studies that evaluate the feline microbiome using metagenomics sequenc-
ing should consider diet as a potential variable when interpreting their findings.

Signatures of obese cat gut microbiota—what did we learn at the microbial
diversity level? Given that the gut microbiota composition is directly relevant to the
host’s digestion and energy metabolism, thorough identification of gut microbiome
signatures is critical to define the medical condition of feline obesity in terms of micro-
biota dysbiosis. Significant differences in the gut microbiome have been reported in
obese compared to lean cats using PCA analysis (32), but the qPCR approach cannot
determine the microbial diversity. Another 16S rDNA metagenomic study of lean neu-
tered/intact and obese cats identified a lower alpha diversity in lean neutered cats, and
no significant grouping was detected when beta diversity was analyzed (53). In this
study, we discovered a significant reduction in alpha diversity at both the genus and
species levels in the obese microbiome, suggesting dramatically reduced microbial
complexity, which often reflects a state of dysbiosis in the gut microbiome. The beta-
diversity analysis also revealed a distinct separation of the normal and obese cat micro-
biomes. In addition to the taxonomy level, the reduced diversity was also observed at
the gene level, in which the number of microbial genes predicted in the obese micro-
biome (598,349) was significantly fewer than the normal cat microbiome (912,251).
Another study of the gut microbiome of diabetic cats discovered decreased gene mark
richness in diabetes mellitus (DM) cats (FDR = 0.04) (54). The obese cats in this study
also demonstrated significant insulin resistance, and the reduction in gene richness
was in the same direction as the 2019 study (54).

Shift from Firmicutes to Bacteroidetes in obese cat gut microbiota is in the
opposite direction compared with human and mouse gut microbiomes. Phylum-
level abundance changes are directly relevant to obesity. Previous studies in humans
and rodents found that the ratio of the two most dominant phyla, the Gram-positive
Firmicutes over the Gram-negative Bacteroidetes, was elevated in obese individuals
and may be a hallmark of obesity (29, 67–69). The validity of this potential marker was
questioned subsequently by contradictory results (70–74), but this metric was still
worth investigating. Interestingly, we observed an inverse pattern compared with
what was reported in humans and rodents, with a significantly decreased Firmicutes-
to-Bacteroidetes ratio in the obese cat gut microbiome. Bacteroidetes replaced
Firmicutes as the most dominant phylum in obese cat gut microbiota. A similar pattern
was also reported in a cat 16S rDNA study, in which lean neutered cats had a greater
abundance of Firmicutes and a lower abundance of Bacteroidetes compared with
obese neutered cats (53). Based on the current knowledge, this dramatic shift in the
Firmicutes-to-Bacteroidetes ratio is likely to be unique in cats, and may serve as an in-
dicator of microbiome health in obese and overweight cats.

Signatures of obese cat gut microbiota—what did we learn at the microbial
species level? Previous 16S rDNA studies of the link between the gut microbiome and
feline obesity were extremely informative at the phylum and genus levels, but failed to
identify any individual bacteria species associated with obesity. Thanks to the resolu-
tion enabled by the WGS metagenomic sequencing, we identified hundreds of bacte-
rial species with a significantly altered abundance between normal and obese gut
microbiomes. Because many of these significant species may not be biologically rele-
vant due to low abundances, we focused on high abundance (.0.5%) microbial spe-
cies with high fold change (.16) between obese and normal cat gut microbiomes
(HAHFC species). Among the six HAHFC species, Bifidobacterium adolescentis, Dialister
sp. CAG:486, Olsenella provencensis, and Campylobacter upsaliensis were significantly
enriched in the obese cat gut microbiome, whereas Erysipelotrichaceae bacterium
AU001MAG and Phascolarctobacterium succinatutens were depleted in the obese cat
gut microbiome. The significant changes in these species were validated using qPCR
experiments. At the genus level, Bifidobacterium and Dialister were identified to be
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increased in obese/overweight compared to lean cats (FDR = 0.04 for Dialister and
FDR , 0.0001 for Bifidobacterium) in a 16S rDNA study of obese cat gut microbiota
(54). Our research has identified the driving microbial species in these two genera,
which were the most featured genera in the obese cat gut microbiota discovered in
this study. The family Erysipelotrichaceae was discovered to be significantly decreased
(.5-fold) in obese women compared with healthy control individuals (75), which is the
same direction as our results on the newly discovered species Erysipelotrichaceae bacte-
rium AU001MAG in this family, suggesting it may play an important role in obesity.
Olsenella provencensis and Campylobacter upsaliensis were not reported to be associ-
ated with obesity in any other species. Our findings of key bacterial community altera-
tions at the species level will inform the development of probiotic treatment for weight
loss therapy in cats.

Obesity etiology from cat to human—shared significant bacterial genera
between human and cat gut microbiota provide potential translational value. In a
Mayo Clinic study published in 2017, 26 participants (18 to 65 years) were enrolled in
the Mayo Clinic Obesity Treatment Research Program, and the body weight was meas-
ured at the beginning and after 3 months of this program. At least 5% weight loss after
3 months was defined as success (76). Gut microbiome composition was compared
between the success and failure groups. Two genera were identified with significant
changes according to the LEfSe analysis (LDA score . 2), and the remaining ones were
non-significant (76). Increased Phascolarcobacterium abundance was associated with suc-
cess (P = 0.008), and increased Dialister abundance was associated with failure of weight
loss (P = 0.030) (76). Strikingly, species in these two genera were among the six HAHFC spe-
cies identified in this study: Dialister sp. CAG486 was the most enriched bacterial species in
the obese cat microbiome with a 1,500-fold increase; Phascolarctobacterium succinatutens
was highly abundant in the normal cat gut microbiome, but almost missing in the obese
cat gut microbiome with a 400-fold reduction in abundance. Based on the human gut
microbiome study on weight loss outcomes (76) and our results in obese cats, high levels
of Dialister may prevent body weight loss, and Phascolarctobacterium was associated with
lean microbiomes by promoting body weight loss.

Bifidobacterium in feline obesity—is Bifidobacterium a good choice for
probiotic health supplement in cats? Bifidobacterium is believed to be among the
first members of microbes colonizing the human gastrointestinal tract since the infant
stage. They were known to positively impact the host gut health (77). Therefore,
Bifidobacterium is often used as probiotics to reduce gut problems such as diarrhea or
constipation, and it was shown to have an impact on obesity. In rats, B. adolescentis
supplementation can reduce visceral fat accumulation (78). In mouse models of high-
fat diet-induced non-alcoholic fatty liver disease (NAFLD) (79) and colitis (80), B. adoles-
centis were shown to ameliorate the disease symptoms. Interestingly, B. adolescentis
was identified as an HAHFC species in this study, with a 60-fold increase in the obese
cat gut microbiome, which was in the opposite direction compared with previous
rodent studies. In addition to B. adolescentis, we found that five other Bifidobacterium
species/subspecies were also significantly increased in the obese cat microbiome. The
effects on body weight were reported to be strain-dependent: B. adolescentis strains
isolated from the feces of elderly human donors (Z25, 17_3, and 2016_7_2) decreased
the body weight or weight gain in mice, while the strain isolated from the human new-
born (N4_N3) increased the body weight in mice (81). In a recent weight management
and microbiome study, cats on a high-protein, low-carbohydrate diet had decreased
Bifidobacterium level (P = 0.002) compared with animals on the control diet, suggesting
a lower level of Bifidobacterium is beneficial to body weight loss (48). Taken together,
higher levels of Bifidobacterium were associated with obesity in cats, which was differ-
ent from the human and rodent studies. We need to be cautious when designing pro-
biotic formulas for cat weight management.

Erysipelotrichaceae bacterium and Phascolarctobacterium—beneficial bacteria
for feline weight loss? A previously uncharacterized genus Erysipelotrichaceae bacte-
rium was largely depleted in obese cat gut microbiota (from 0.383% to ,0.001%,
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FDR = 0.012), which was the most decreased species in the obese cat microbiome.
Similarly, the abundance of Phascolarctobacterium dropped from 0.078% in normal
cats to ,0.001% in obese cats. We validated the dramatic decreases in both
Erysipelotrichaceae and Phascolarctobacterium by qPCR. Moreover, the increased abun-
dance of Phascolarctobacterium was proved to be associated with successful weight
loss in the Mayo Clinic study (76). These two species deserve further consideration as
potential probiotics for weight loss.

Microbiome signatures in feline obesity—obese cat microbiome index Cups/
Chel and a qPCR panel to detect obesity-associated microbiomes. We detected 20
species in the genus of Campylobacter in the cat gut microbiome. A pathogenic species,
Campylobacter jejuni, can colonize obese (ob/ob) mice with oral inoculation, and the ob/ob
mice were extremely sensitive to C. jejuni infection (82). However, C. jejuni had low abun-
dance in this study, and there was no significant difference between normal and obese
cats. Notably, C. upsaliensis and C. helveticus, which were not linked with obesity before,
were discovered to have significant abundance changes in the obese cat gut microbiome
in the opposite direction. As an HAHFC-obese species, C. upsaliensis was almost absent in
the normal microbiome (0.02%) but accounted for 0.5% in the obese cat gut microbiome.
In contrast, C. helveticus, was extremely low in abundance in the obese microbiome
(0.02%), but with a 12-fold increase in the normal microbiome. This inverse pattern in the
normal versus obese microbiome was validated by qPCR, and the relative ratio of the two
species had a much-improved discriminative power between obese and normal individu-
als. Therefore, we proposed to define the relative abundance of C. upsaliensis over C. helve-
ticus as an obese cat microbiome index.

To investigate the microbiome features of feline obesity and define obesity-associ-
ated microbiomes, a total of eight microbial species were selected as an indicator
panel for dysbiosis in the obese cat gut microbiome. Prevotella is the most abundant
genus in cat gut microbiome, according to 16S studies (53) and this WGS metagenomic
study. At the microbial species level, we found that Prevotella copri is the most abun-
dant species in the cat gut microbiome, accounting for 12.9% of the entire microbiota
in normal cats (Table S5). We also observed a potential trend of increasing abundance
in the obese cat gut microbiome (19.6% abundance), but it was not statistically signifi-
cant (P = 0.44 and FDR = 0.67). Interestingly, Prevotella copri has a significantly higher
abundance in fat pigs, and was shown to promote host chronic inflammation, intesti-
nal permeability, lipogenesis, and fat accumulation through the TLR4 and mTOR signal-
ing pathways (83). Our result showed a similar trend, but it did not reach statistical sig-
nificance. Prevotella copri was selected as the control species for the indicator panel
because of its high abundance. The panel also includes four highly enriched species in
obese cat gut microbiota (Bifidobacterium adolescentis, Olsenella provencensis, Dialister
sp. CAG:486, and Campylobacter upsaliensis), and three significantly depleted species in
obese cat gut microbiota (Phascolarcobacterium succinatutens, Erysipelotrichaceae bac-
terium AU001MAG, and Campylobacter helveticus). This panel will serve as a cost-effec-
tive method to examine the microbiome correlates of feline obesity and can be applied
in a much larger sample size.

Fatty acids biosynthesis pathways are enriched in obesity-associated microbiota.
We discovered that fatty acid biosynthesis pathways were significantly overrepre-
sented in the obese cat gut microbiome compared with normal cats, including biosyn-
thesis and elongation of saturated fatty acids (SFAs). SFAs can add to the risk of cardio-
vascular disease by increasing the low-density lipoprotein (LDL) cholesterol levels in
the serum. A study has found stearic acid-rich fat can raise the LDL/HDL (high-density
lipoprotein) ratio (84). These SFAs generated by gut microbiota may contribute to lipid
dyscrasia in obese and overweight cats (85). One limitation of our results is that they
were merely correlations, and we do not know whether the shifted metabolic path-
ways caused the obesity phenotype, or the obese environment drove the microbiome
changes. Further studies are needed to disentangle the causal relationships.

Significant changes in carbohydrate metabolism on the obese cat gut microbiota.
The metabolic pathway analyses suggested that increased carbohydrate metabolism
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in the gut microbiome may be associated with feline obesity. The carbohydrate biosyn-
thesis pathway of certain sugar, including CMP-legionaminate, was significantly overre-
presented in the obese cat gut microbiome. A human study contrasting long-term
healthy versus unhealthy diets discovered that increased degradation (or reduced bio-
synthesis) of CMP-legionaminate was associated with the healthy diet (86), which is
consistent with the findings in this feline study. Compared with normal cats, the obese
cat gut microbiome had a higher proportion of CAZymes. The elevated CAZymes were
primarily driven by Bacteroidetes and Actinobacteria. When the individual CAZyme
families were investigated, we discovered a significant decrease in the carbohydrate-
binding module CBM50 and Glycosyltransferase GT25 in obese cat gut microbiota.
GT25 belongs to GlycosylTransferase Family, and usually acts as lipopolysaccharide
b-1,4-galactosyltransferase, b-1,3-glucosyltransferase, and b-1,2-glucosyltransferase.
CBM50s, also known as LysM domains, mainly bind to the N-acetylglucosamine resi-
dues in bacterial peptidoglycans and in chitin. Three glycoside hydrolases, GH28,
GH19, and GH116, were enriched in the obese cat gut microbiota. These changes in
different CAZyme categories may define the microbiome functional differences in car-
bohydrate metabolism.

Conclusions. Through comprehensive analyses of normal and obese cat gut micro-
biota using WGS metagenomic sequencing, we report the first reference contig assem-
bly of the cat gut microbiome and its first microbial gene catalog. This contig assembly
and gene catalog provide both the reference for cat metagenome study and the essen-
tial feline microbiome toolkit for comparative analysis across mammalian microbiomes.
Obese cat gut microbiome has distinct patterns compared with cats with normal body
weight, including significant reductions in microbial diversity and gene numbers, a dra-
matic shift in phylum-level composition from Firmicutes-dominant to Bacteroides-
dominant microbiome, and a number of abundant bacterial species with extremely
high-fold changes (.0.5% in composition with .16-fold change). We identified the
gut microbiome profiles associated with lean cat health, and a panel of marker species
that indicate dysbiosis in obese cat microbiota, which may negatively impact feline
health. The findings from this study will be critical to inform weight management strat-
egies for obese cats, including evaluations of specific diet formulas that alter the micro-
biome composition, the development of prebiotics and probiotics that promote the
increase of beneficial species and the depletion of obesity-associated species, as well
as potential microbiome transplantation therapies. Bacteria identified in our study
were also shown to affect the weight loss success in human patients, suggesting trans-
lational potential in human obesity.

MATERIALS ANDMETHODS
Animal selection and maintenance. All procedures were approved by the Auburn University

Institutional Animal Care and Use Committee (IACUC) with protocol number PRN 2019–3482. Animals
were provided and/or maintained by the Scott-Ritchey Research Center, College of Veterinary Medicine,
Auburn University. The obese group consisted of animals who participated in a study of the effects of
obesity on feline health, which were obese, neutered male cats at 6 years of age (n = 8). The normal
group included eight lean and reproductively intact cats from the Scott-Ritchey breeding colony, rang-
ing in age from 4 months to 6 years old (Fig. S1 and Table S1). The normal cats were fed with Hill’s
Science Diet Adult Chicken Recipe Dry Cat Food with the following nutritional ingredients determined
by the manufacturer (Hill’s): 35.0% protein, 21.4% fat, 35.2% carbohydrate (nitrogen-free extract), and
1.6% crude fiber. The obese cats were on the LabDiet laboratory feline diet 5003 with the following
ingredients provided by the manufacturer (LabDiet): 30.5% protein, 24.5% fat, 38.1% carbohydrate
(nitrogen-free extract), and 2.3% crude fiber. Both diets were standard adult cat food with very similar
nutritional ingredients. No probiotics were provided to any of these cats. No antibiotic treatments were
applied to any of these cats within 2 months prior to the study. The cats were not experiencing any
stress prior to the fecal sample collection either.

Morphometrics, blood glucose, and insulin measurements in obese cats. Cats were sedated to
effect using medetomidine, ketamine, and butorphanol administered intramuscularly. Body condition
score was evaluated using the World Small Animal Veterinary Association criteria for cats (87, 88). Whole
blood glucose was evaluated immediately using the AphaTrak 2 monitoring system (Zoetis, MI). Serum
was separated from clotted whole blood by centrifugation at 800 g for at least 15 min and was frozen at
280 C until needed. Serum insulin was determined using a commercially available ELISA kit specific to
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cats (Mercodia Inc., NC) (89). The homeostatic model assessment for insulin resistance (HOMA-IR) was
calculated as the basal glucose and insulin concentration product, divided by 22.5 (6).

Fecal sample collection and microbial DNA extraction. Fecal samples were collected under seda-
tion immediately after blood collection to prevent interference of epinephrine-mediated hyperglycemia
(Table S1). Plastic fecal loops were coated with mineral oil and inserted into the rectum and descending
colon of the cats until an adequate amount of feces was collected. The samples in this study reflect the
fecal composition of the rectum and descending colon, which is representative of the lower gut. We
referred to the microbiota characterized in the fecal samples in this research as cat gut microbiota.

Genomic DNA samples were extracted from 200 mg fecal samples using the Qiagen Allprep
PowerFecal DNA/RNA kit (Qiagen, MD) following the manufacturer’s protocols. To achieve homogene-
ous results, the homogenization step was performed by the Qiagen PowerLyzer24 instrument (Qiagen,
MD) in the same batch. DNA and total RNA concentrations were measured by a Qubit 3 Fluorometer
(Invitrogen, CA), and the A260/A280 absorption ratios were assessed using a NanoDrop One C
Microvolume Spectrophotometer (Thermo Fisher Scientific, MA).

Metagenomic sequencing, quality control, and preprocessing of metagenomic reads. For each
sample, 1.5;2 mg of DNA was fragmented by M220 Focused-ultrasonicator (Covaris, MA) to achieve a
target insert size of 500 bp. WGS metagenomic sequencing libraries were constructed using NEBNext
Ultra II DNA Library Prep Kit for Illumina (New England Biolabs, MA), according to the manufacturer’s
protocols. Final library concentrations and size distributions were determined by LabChip GX Touch HT
Nucleic Acid Analyzer (PerkinElmer, MA). The libraries were measured by qPCR before being sequenced
on an Illumina NovaSeq6000 sequencing machine with 150-bp paired-end reads at the Genomics
Service Laboratory at the HudsonAlpha Institute for Biotechnology (Huntsville, AL).

A total of 1.8 billion sequencing reads (or 271 Gbp reads) were obtained from 16 metagenomes
(Table S2). Paired-end reads were merged to increase read length with PEAR (v0.9.11) (90). Adapter
sequences and low-quality sequences were cleaned from subsequent reads using Trimmomatic (v0.36)
(91). High-quality filtered reads were then mapped to the feline reference genome (GCF_000181335.3)
using Burrows-Wheeler Aligner (BWA) (v0.7.17-r1188) (92) and SAMtools (v1.6) (93). The retained reads
were mapped to the viral genome database downloaded from National Center for Biotechnology
Information (NCBI) to remove the viral sequences (94). The remaining reads were extracted for subse-
quent analysis using BEDTools (v2.30.0) (95).

Feline gut metagenome assembly and microbial gene annotation. The filtered reads were
assembled into metagenomic contigs with MEGAHIT v1.1.2 with default parameters (96). Contigs shorter
than 400 bp were filtered out, and redundant contigs were removed using cd-hit-est (v4.7) (97, 98) with
the criteria of global sequence identity more than 95%. Microbial genes were predicted from the
assembled cat reference metagenomic contigs using MetaGeneMark (v3.38) (99).

Taxonomy assignment and taxonomy abundance analysis. Taxonomy assignments for these non-
redundant metagenomic contigs were performed using Kaiju (v1.7.3) (100) against NCBI-NR database at
superkingdom, phylum, class, order, family, genus, and species levels. 92.6% of the contigs were annotated
and assigned an NCBI taxonomy ID. Among these contigs, 54.6% are annotated to the species level. The fil-
tered PE reads from each metagenome were aligned to the assembled cat reference metagenomic contigs
(Table S2). For each sample, the relative taxonomic frequencies were calculated as the number of reads
mapped to the contigs in a specific taxon normalized by the total number of aligned reads (Data set S1 to
S4). The top 20 most abundant bacterial genera and species were listed in Table S4 and Table S5.

Microbial diversity analysis in normal and obese cats. The alpha- and beta-diversity of taxonomy
profiles were performed using R package vegan v2.5.7 (101). Alpha-diversity was analyzed using the
Shannon index (102) at the genus level and the species level. Beta-diversity was analyzed based on the Bray-
Curtis dissimilarity (103) at the species level and visualized in the format of PCoA plot using R software (104).

Analysis of age and sex effects in the normal cat group. Given that age and sex may potentially
affect the gut microbiome composition, we performed PCoA analysis at the species level in the control
group and used permutational multivariate analysis of variance (PERMANOVA) to determine significant
differences between different males and females, as well as between different age groups.

Identification of significantly altered genera or species in normal and obese cats. To assess the
statistical significance of the differential abundance of genera or species in normal cats and obese cats,
Mann-Whitney U tests (105) were performed in R (Data set S5, S6). The heatmap plots were generated
using R package pheatmap (v1.0.12), and the adjusted P values (P-adj) were calculated using R package
qvalue (v2.22.0) (106). Genera with an average frequency of at least 0.1% and a minimum absolute value
of log2 fold change of 2 are listed in Table S6. Species with an average frequency of at least 0.01% and a
minimum absolute value of log2 fold change of 2 are listed in Table S7 and Table S8.

Linear discriminant analysis in normal and obese cat gut microbiota. Linear discriminant analysis
effect size (LEfSe v1.1.1) analysis was performed via Galaxy web application (http://huttenhower.org/
galaxy) with default options to determine the most featured families, genera, and species that explain
the differences between normal and obese cat gut microbiota. The relative taxonomic frequencies were
used as the input of LEfSe pipeline.

Metagenomic assembly, genome completeness, and synteny analysis of a previously
uncharacterized species Erysipelotrichaceae bacterium AU001MAG. The genome of the uncharacter-
ized Erysipelotrichaceae bacterium species was assembled from the metagenomic reads using MEGAHIT
(96), and this species is named Erysipelotrichaceae bacterium AU001MAG. CheckM (107) was used to
assess the quality of this microbial genome and the two most related species in the family of
Erysipelotrichaceae, Lactimicrobium massiliense (NCBI assembly accession number GCA_900343155) and
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Bulleidia sp. zg-1006 (NCBI assembly accession number GCA_016812035). The synteny analysis of these
species was performed with MCscan (Python version) (108).

qPCR validation of microbial abundance changes. A total of eight bacterial species were selected for
qPCR validation, including Prevotella copri, the most abundant species with no significant changes between nor-
mal and obese microbiota, four highly abundant species enriched in obese cat gut microbiota (Bifidobacterium
adolescentis, Olsenella provencensis, Dialister sp. CAG:486, and Campylobacter upsaliensis), and three species
enriched in normal gut microbiota (Erysipelotrichaceae bacterium AU001MAG, Phascolarcobacterium succinatutens,
and Campylobacter helveticus). The qPCR primers (Table S9) were designed in Oligo 7 software (109) and synthe-
sized by Eurofins (Eurofins Genomics Inc., KY). For each qPCR, 30 ng fecal DNA sample was mixed with PerfeCTa
SYBR green FastMix, Low ROX (Quantabio, Cat No. 95072-012) in 96-well plates, and the qPCR was performed on
a Bio-Rad C1000 Touch Thermal Cycler with CFX96 Real-Time PCR Detection Systems (Bio-Rad Laboratories, CA).
Non-parametric Wilcoxon Rank Sum test was performed on log10 scale of expression values to assess the statisti-
cal significance.

Enrichment of functional categories and pathways. The HMP Unified Metabolic Analysis Network,
HUMAnN 3.0 (110), was used to profile the abundance of microbial metabolic pathways from metage-
nomic sequencing data based on MetaCyc database (111). Functional annotation was performed with
eggNOG-mapper (112) based on eggNOG 5.0 database (113). CAZymes were predicted using and auto-
mated carbohydrate-active enzyme annotation tool dbCAN (114). Wilcoxon rank sum tests were per-
formed to assess the statistical significance of the differential pathways in normal cats and obese cats.

Supplemental files are available at github.com/XuWangLab/2020_feline_microbiome_sppData.
Data availability. The whole-genome shotgun metagenomic sequencing data is available at NCBI

SRA under accession number PRJNA758898. This whole-genome shotgun metagenomic assembly has
been deposited at DDBJ/ENA/GenBank under the accession GCA_022675345.1.
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