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Background & aims: Low-energy diet replacement is an effective tool to induce large and rapid weight
loss and improve metabolic health, but in the long-term individuals often experience significant weight
regain. Little is known about the role of animal-based foods in weight maintenance and metabolic health.
We aimed to examine longitudinal associations of animal-based foods with weight maintenance and

Ié?r’gz\r,iss'cular disease glycaemic and cardiometabolic risk factors. We also modelled replacement of processed meat with other
Obesity high-protein foods.

Poultry Methods: In this secondary analysis, longitudinal data were analysed from 688 adults (26—70 years) with
Red meat overweight and prediabetes after 8-week low-energy diet-induced weight loss (>8% of initial body
Processed meat weight) in a 3-year, multi-centre, diabetes prevention study (PREVIEW). Animal-based food consump-
Type 2 diabetes tion, including unprocessed red meat, processed red meat, poultry, dairy products, fish and seafood, and

eggs, was repeatedly assessed using 4-day food records. Multi-adjusted linear mixed models and iso-
energetic substitution models were used to examine the potential associations.

Results: The available-case analysis showed that each 10-g increment in processed meat, but not total
meat, unprocessed red meat, poultry, dairy products, or eggs, was positively associated with weight
regain (0.17 kg-year’l, 95% CI1 0.10, 0.25, P < 0.001) and increments in waist circumference, HbA;, and
triacylglycerols. The associations of processed meat with HbA;. or triacylglycerols disappeared when
adjusted for weight change. Fish and seafood consumption was inversely associated with triacylglycerols

Abbreviations: AGEs, Advanced glycation end products; BMI, Body mass index; CVD, Cardiovascular disease; DEXA, Dual energy x-ray absorptiometry; FPG, Fasting plasma
glucose; GI, Glycaemic index; HbA;., Haemoglobin A;c; HDL-cholesterol, High-density lipoprotein cholesterol; HOMA-IR, Homeostatic model assessment of insulin resis-
tance; LDL-cholesterol, Low-density lipoprotein cholesterol; RCT, Randomised controlled trial; TyG, Triacylglycerol-glucose index.
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and triacylglycerol-glucose index, independent of weight change. Modelled replacement of processed
meat with isoenergetic (250—300 kJ-day~' or 60—72 kcal-day~!) dairy, poultry, fish and seafood, grains,
or nuts was associated with —0.59 (95% CI -0.77, —0.41), —0.66 (95% CI -0.93, —0.40), —0.58 (95% CI
-0.88, —0.27), and —0.69 (95% CI -0.96, —0.41) kg-year—! of weight regain, respectively (all P < 0.001) and
significant improvements in HbA., and triacylglycerols.

Conclusions: Higher intake of processed meat, but not total or unprocessed red meat, poultry, dairy
products, or eggs may be associated with greater weight regain and more adverse glycaemic and car-
diometabolic risk factors. Replacing processed meat with a wide variety of high-protein foods, including
unprocessed red meat, poultry, dairy products, fish, eggs, grains, and nuts, could improve weight
maintenance and metabolic health after rapid weight loss. This study was registered as ClinicalTrials.gov,

NCT01777893.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Type 2 diabetes and cardiovascular disease (CVD) are major
global health challenges. Obesity is a key driver and weight loss has
been shown to be related to improvements in glycaemic and car-
diometabolic risk factors [1,2]. Low-energy diet replacement, an
effective tool to induce large and rapid weight loss, has been
introduced in many weight management and type 2 diabetes pre-
vention programmes [3], but individuals often experience signifi-
cant weight regain and worsened metabolic outcomes in the long
term [4,5].

Dietary intake may play a vital role in weight management and
prevention of type 2 diabetes and CVD. Eating a diet with plant-
based foods, such as vegetables, fruits, and nuts, has been shown
to be inversely associated with weight gain and risk of type 2 dia-
betes and CVD [6,7]. Animal-based foods have recently been con-
nected to worsened metabolic outcomes and emerging
epidemiological evidence suggests that red and processed meat
intake is associated with an increased risk of weight gain [8], type 2
diabetes [9], and CVD [10—12]. Prospective cohort studies show
that replacing red meat with other foods such as nuts and grains is
associated with a lower risk of type 2 diabetes and CVD [10,13,14].
Regarding other animal-based foods including dairy products,
poultry, fish and seafood, and eggs, null or conflicting findings have
been reported [8,15—18].

Very few previous studies focused on animal-based food choice
and food substitutions for weight maintenance and metabolic
health, especially after a low-energy diet-induced rapid weight
loss. In a secondary analysis of the DIOGenes study, replacing meat
protein with protein from other animal sources was associated with
increased fasting insulin and homeostasis model assessment of
insulin resistance (HOMA-IR), but not body weight or body fat
during weight maintenance [19]. However, that analysis did not
explore specific meats e.g. red meat, processed meat, and poultry
and food substitutions for specific meats. Moreover, the DIOGenes
study lasted for 6 months only [19].

The aim of the present secondary analysis was to examine the
associations of animal-based foods (i.e. total meat, unprocessed red
meat, processed red meat, poultry, dairy products, fish and seafood,
and eggs) with 3-year weight maintenance and glycaemic and
cardiometabolic risk factors in the participants from four inter-
vention centres in the PREVIEW study. In addition, as many pre-
vious studies have shown detrimental effects of processed meat on
human health [12,20], we also conducted a tertiary analysis and
modelled associations between replacement of processed meat
with other animal- and plant-origin high-protein foods and meta-
bolic risk factors.
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2. Methods
2.1. Study design

This secondary analysis was based on the PREVIEW study, a 3-
year multi-centre diabetes intervention (ClinicalTrials.gov,
NCT01777893). Detailed information regarding PREVIEW has
already been described in a previous paper [21]. The main results
have been published elsewhere [22,23]. The PREVIEW study was
conducted at eight intervention centres in Denmark, Finland, the
Netherlands, the UK, Spain, Bulgaria, New Zealand, and Australia. In
the present analysis, we used data from four intervention centres
(Finland, the UK, New Zealand, and Australia), because they pro-
vided food intake data in g-day~! or serving-day~' and complete
food categories.

The main aim of PREVIEW was to assess the long-term effect of
two diets combined with two physical activity programmes on risk
of type 2 diabetes after an 8-week weight loss period. The primary
outcome was the risk of type 2 diabetes between the two diet
groups [23]. During the weight loss period, participants were pro-
vided with a low-energy diet (3400 k]-day~' or 810 kcal-day~).
After this period, participants were assigned to one of the four
diet—physical activity groups and commenced 148-week weight
maintenance. During the weight maintenance intervention, par-
ticipants were suggested to consume a high-protein/low-glycaemic
index (GI) (25 E% protein, GI < 50) or moderate-protein/moderate-
GI (15 E% protein, GI > 56 and < 70) diet combined with a high- or
moderate-intensity physical activity programme. The diets were
consumed ad libitum. The participants were provided with cooking
books and examples of eating plans reflecting the macronutrient
and GI requirements of the two diets. We also conducted a
behavioural modification programme (PREMIT) and 17 group visits
throughout the study to improve dietary and physical activity
compliance. The PREVIEW protocol was approved by the Human
Ethics Committees at all intervention centres. The PREVIEW study
was conducted in accordance with the Declaration of Helsinki (59th
WMA General Assembly, Seoul, Korea, October 2008).

2.2. Study population

The recruitment took place from June 2013 to April 2015. The
main inclusion criteria included: 1) age 25—70 years; 2) over-
weight (BMI 25—-29.9 kg m~2) or obesity (BMI>30 kg m2); 3)
prediabetes. Prediabetes was defined according to the American
Diabetes Association criteria [24]: individuals with impaired
fasting plasma glucose (FPG) (5.6—6.9 mmol L~ 1) or with impaired
glucose tolerance (2-h plasma glucose of 7.8—11.0 mmol L~! and
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FPG<7.0 mmol L~1) after an oral ingestion of 75 g of glucose. HbA1
was not used for defining prediabetes. The main exclusion was
participants with type 1 diabetes or type 2 diabetes prior to the
study. Eligible participants were assigned to one of the four
diet—physical activity groups by gender and age (25—45, 46—54,
or 55—70 years) and started 8-week weight loss. Those who suc-
cessfully lost>8% of initial body weight commenced 156-week
weight maintenance. We excluded those with missing animal-
based food data at 26 weeks and/or implausible low or high en-
ergy intake (<2520 kJ-day /600 kcal-day ! or >14,700 kJ-day !/
3500 kcal-day~! for women and <3360 k]-day~!/800 kcal-day !
or >17,640 kJ-day~!/4200 kcal-day~! for men) [25,26].

2.3. Assessment of dietary intake

Dietary intake was assessed using self-reported 4-day food re-
cords including three working days and one weekend day. The food
records were collected repeatedly at 26, 52, 104, and 156 weeks.
Participants were instructed to report dietary intake by weighing
foods or using household measurements e.g. cups, spoons, and
glasses. In addition, participants were instructed to describe the
food in detail e.g. type of foods and cooking methods. Collected
dietary data were entered into nutrient analysis programmes with
local food information i.e. AivoDiet (Finland), Nutritics (the UK),
and Foodworks (Australia and New Zealand) for further calculation.
All intervention centres followed the same standard operating
procedure including necessary steps for recording of food intake,
data entry, and analysis of the completed food records. Dietary
intake was expressed in kg-day~! or serving-day~'. Serving sizes
were converted to grams of food consumed according to the
Australian Dietary Guidelines (2013) [27], and vice versa.

A cumulative average method was used to estimate long-term
self-reported dietary intake during weight maintenance. Cumula-
tive average dietary intake from 8 to 26, 52,104, and 156 weeks was
calculated. Dietary intake measured at 26 weeks was used to esti-
mate the average dietary intake from 8 to 26 weeks. Detailed in-
formation is included in Supplementary Materials and
Supplementary Table 1. Animal-based foods included total meat,
unprocessed red meat, processed meat, poultry, fish and seafood,
eggs, and dairy products. Total meat included unprocessed red
meat, processed meat, and poultry. High-protein foods of plant-
origin included grains, legumes, and nuts. The definition of indi-
vidual food groups is included in Supplementary Table 2.

2.4. Assessment of outcomes

Body weight outcomes and glycaemic and cardiometabolic risk
factors were measured repeatedly at 8, 26, 52, 104, and 156 weeks.
Body weight was measured in fasting (>10 h) participants with
light clothing or underwear. Fat mass was determined using dual
energy x-ray absorptiometry (DEXA) in the UK (GE Lunar Prodigy,
GE Healthcare, Madison, WI, USA), Australia (Hologic Discovery W,
Hologic, Bedford, MA, USA), and New Zealand (GE Lunar, GE
Healthcare, Madison, WI, USA) and bioelectrical impedance in
Finland (InBody720 Body Composition Analyser, Biospace Co., Ltd,
Korea). Blood samples were drawn from the antecubital vein after
fasting (>10 h) and were initially stored locally at —80 °C. Then they
were sent to the central laboratory in Finnish Institute for Health
and Welfare, Helsinki, Finland for batch analysis of FPG, haemo-
globin Ai. (HbA.), fasting insulin, fasting triacylglycerols, total
cholesterol, and HDL-cholesterol. HOMA-IR was calculated as
fasting insulin (mU-L"!) x FPG (mmol-L~1)/22.5. The
triacylglycerol-glucose (TyG) index, a measure reflecting insulin
resistance and predicting the development of CVD, was calculated
as Ln [triacylglycerols (mg-dL™") x FPG (mg-dL™")/2] [28].
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2.5. Assessment of covariates

Socio-demographic information including age, sex, ethnicity
(Caucasian, Asian, Black, Arabic, Hispanic, or other), and smoking
(daily, less than weekly, or no smoking) were self-reported by
participants at baseline (0 weeks). Total physical activity was
determined using a 7-day accelerometry (ActiSleep+; ActiGraph
LLC, Pensacola, FL) at 26, 52, 104, and 156 weeks and was expressed
by mean activity counts during valid wear time (counts-min~).

2.6. Statistical analysis

Baseline characteristics are presented as means + standard de-
viation or median (25th and 75th percentiles) for continuous var-
iables, or percentage of participants (n%) for categorical variables.
Difference between completers and non-completers in baseline
characteristics was examined by an independent-samples ¢ test for
approximately normally-distributed variables, a Mann—Whitney U
non-parametric test for non-normally-distributed variable, and a
2 test for categorical variables.

We conducted both available-case and complete-case analyses
to assess associations of animal-based foods with yearly changes
in weight outcomes and glycaemic and cardiometabolic risk fac-
tors. Yearly changes in outcomes were calculated as changes in
outcomes from 8 to 26, 52, 104, and 156 weeks divided by cor-
responding changes in years. We used multi-adjusted linear
mixed models. Model 1 was adjusted for age, sex, ethnicity,
intervention group, time (categorial), BMI at 8 weeks, and values
of outcomes at 8 weeks as fixed effects and intervention centre
and participant identifier as random effects. Model 2 included all
animal-based foods simultaneously and was additionally adjusted
for lifestyle factors as fixed effects, including smoking, physical
activity, energy intake (kJ-day~!), alcohol drinking (g-day™ 1),
sugars, grains, legumes, nuts, vegetables, and fruits (all in
g-day~ ). Model 3 was additionally adjusted for yearly weight
change as a fixed effect. The results were expressed as changes in
study outcomes per year associated with 35-g increment in total
meat, 25-g increment in red meat, 100-g increment in dairy
products, 20-g increment in poultry, 20-g increment in fish and
seafood, or 15-g increment in eggs—all based on the medians and
25th and 75th percentiles of animal-based food intakes over 3
years. If the associations showed significance in the model, but
were lost in model 3 after adjustment for weight change, a
mediation analysis based on Baron and Kenny's (1986) steps for
mediation [29] was conducted to examine whether weight change
was a mediator variable. We also examined potential effect
modification by sex or age (25—45, 46—54, or 55—70 years) by
adding interaction terms in the models.

For animal-based foods that showed significant associations
with weight outcomes or glycaemic or cardiometabolic risk factors
in model 2, we divided participants into tertiles at each time point
separately according to the animal-based food intake at different
time points. The median (25th, 75th percentiles) values of tertiles at
different time points are presented in Supplementary Table 3. We
conducted available-case analysis to examine the difference in
weight outcomes or glycaemic and cardiometabolic risk factors
among tertiles, using linear mixed models adjusted for the cova-
riates in model 2. As the tertiles were defined afresh at each time
point, we performed multiple comparisons with Bonferroni
adjustment to compare outcomes of interest among the tertiles,
regardless of the significance of time and group interaction.

For animal-based foods that showed inverse associations with
outcomes of interest, we also modelled associations of replacing
them with other high-protein foods wusing isoenergetic
(250—300 kJ-day~! or 60—72 kcal-day~!) substitution linear mixed
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models adjusted for the covariates in models 2 and 3 [30]. We first
converted grams of intakes of animal- and plant-based foods to
serving sizes (0.5 serving-day~! equals 250—300 kJ-day~' or
60—72 kcal-day~!). Then we obtained yearly mean changes in
outcomes of interest (estimates or B) per 250—300 kJ-day~! or
60—72 kcal-day~! for processed meat and each of the other high-
protein foods. Finally, we compared the two estimates and calcu-
lated the difference between the estimates, accounting for their
variance and covariance. Data were analysed using IBM SPSS v28.0
software (Chicago, IL, USA). The statistical test was 2-sided with o
set as 0.05.

3. Results

A total of 688 participants (2083—2273 observations of out-
comes of interest) with complete animal-based food data at 26
weeks and plausible energy intake were included in the available-
case analysis (Fig. 1). Of these, 479 participants (1734—1886 ob-
servations) were included in the complete-case analysis. The me-
dian age of the 688 participants (68.5% women) was 57 years
(range: 26—70) at the start of weight maintenance. The median
(25th, 75th percentiles) values were 29.5 kg m~2 (26.6, 33.4) for
BMI, 34.2 g-day~' (0, 66.3) for red meat intake, 12.0 g-day~! (0,
29.7) for processed meat intake, and 30.9 g-day~! (5.4, 63.7) for fish
and seafood intake (Table 1).

Figure 2 shows associations of processed meat, fish and seafood
intake with changes in weight outcomes and glycaemic and car-
diometabolic risk factors during 3-year weight maintenance. In the
available-case and complete-case analyses, processed meat intake
was positively associated with weight and fat mass regains in
models 1 and 2. In model 1, no associations were observed between
processed meat intake and increases in waist circumference,
whereas after adjustment for physical activity and dietary intake,
processed meat intake was positively associated with increases in
waist circumference. In models 1 and 2, processed meat intake was
positively associated with HbA1, triacylglycerols, and TyG index,
whereas the associations were not independent of weight change.
The effect size of the association between processed meat intake
and TyG index was small (Supplemental Table 4), According to
Baron and Kenny's steps for mediation, weight change was a
mediator variable. Processed meat intake influenced HbA;. and
triacylglycerols through weight change. In model 3, intake of fish
and seafood was inversely associated with increments in tri-
acylglycerols and TyG index (Supplementary Table 4), independent
of weight change. The abovementioned associations were not
modified by sex or age.

After adjustment for physical activity and dietary intake in
model 2 and further adjustment for weight change in model 3, no
associations were observed between total meat, unprocessed red
meat, dairy products, poultry, or eggs and weight outcomes or
glycaemic and cardiometabolic risk factors.

The reported significant associations in Fig. 2 remained robust in
the tertile analysis (Fig. 3 and Supplementary Fig. 1), with an
exception of the association between processed meat and TyG in-
dex (Supplementary Fig. 1). Compared with the lowest tertile, the
highest tertile of processed meat intake (~49 g-day~') had greater
weight regain and a greater increment in waist circumference at 52,
104, and 156 weeks, greater increments in FM and HbA;. at 104 and
156 weeks, and a greater increment in TG at 104 weeks (Fig. 3).
However, there were no differences in TyG index among tertiles of
processed meat at each time point (Supplementary Fig. 1).
Compared with the lowest tertile, the highest tertile of fish and
seafood intake had greater decreases in TG at 104 and 156 weeks
(Fig. 3) and greater decreases in TyG index at 156 weeks
(Supplementary Fig. 1).

820

Clinical Nutrition 41 (2022) 817—828

Figure 4 shows associations between isoenergetic substitution
of processed meat with other high-protein foods and weight out-
comes during 3-year weight maintenance. In model 2, replacing
250—300 kJ-day~! or 60—72 kcal-day~! of processed meat with
isoenergetic dairy products, poultry, fish and seafood, egg, grains,
legumes, or nuts was associated with smaller increments in body
weight, fat mass, and waist circumference.

Figure 5 shows associations between isoenergetic substitution
of processed meat with other high-protein foods and glycaemic and
cardiometabolic risk factors during 3-year weight maintenance.
Replacing of processed meat with isoenergetic other foods, but not
legumes, was associated with a smaller increment in HbA;. in
model 2, whereas after adjustment for yearly weight change, all
associations disappeared in model 3. In model 2, replacing of pro-
cessed meat with other foods, but not eggs, was associated with
smaller increments in triacylglycerols. Replacing of processed meat
with other foods, but not eggs or grains, was associated with
smaller increments in TyG index (Supplementary Table 5). After
adjustment for yearly weight change, only the association with fish
and seafood showed significance in model 3.

4. Discussion

In this secondary analysis, we found that higher consumption of
processed meat was associated with greater body weight and fat
mass regains and increases in waist circumference, HbAj., tri-
acylglycerols, and TyG index. Processed meat influenced HbA1,
triacylglycerols, and TyG index through weight change. Fish and
seafood was associated with smaller increments in triacylglycerols
and TyG index, independent of weight change. There were no as-
sociations of total meat, unprocessed red meat, poultry, dairy
products, or eggs with any outcomes of interest. Replacing pro-
cessed meat with isoenergetic amounts of other high-protein foods
was associated with improvements in weight maintenance, fat
mass, waist circumference, HbA;, triacylglycerols, and TyG index.

As emerging findings support that red meat is associated with
an increased risk of multiple chronic diseases [8—11,31], some di-
etary recommendations e.g. US dietary guidance and
Mediterranean-style and DASH (Dietary Approaches to Stop
Hypertension)-style patterns advise individuals to reduce red meat
intake [32,33]. Nonetheless, there is no specific recommendations
for those who would like to maintain weight and metabolic health
after large and rapid weight loss. In the present study, our findings
do not support that adults after rapid weight loss should reduce or
avoid unprocessed red meat intake. Similarly, in two meta-analyses
of randomised controlled trials (RCTs), O'Connor et al. [33,34] found
that intake of red meat did not result in deterioration of glycaemic
and cardiometabolic risk factors, although the RCTs included did
not have a large weight loss phase. In addition, although low red
meat intake is recommended by DASH dietary patterns, some RCTs
showed that DASH diets had equivalent efficacy in decreasing
cardiometabolic risk factors when they contained higher amounts
of red meat [35,36]. Furthermore, Igbal et al. [20] did not find sig-
nificant associations of red meat intake with risk of major CVD in
the PURE (Prospective Urban Rural Epidemiology) study. In agree-
ment with our findings, that study did not find associations be-
tween poultry intake and CVD risk [20].

In a recent review, Leroy and Cofnas [37] argued that dietary
advice that identified meat as an intrinsic cause of chronic diseases
seemed to be based on cherry-picking evidence and conflicting
data being overlooked. In a recent meta-analysis, Zhang et al. [38]
showed that the heterogeneity for the relationship between un-
processed red meat was high and the relative risks were consis-
tently higher in US populations and consistently lower in Asian and
European populations. In addition, cooking methods or preparation
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Individuals being randomised to
one of the four groups, attending at
baseline and starting the weight

loss phase at four intervention

:

908 attended at 8 weeks

;

Individuals eligible for the weight

maintenance phase (n=858)

:

735 attended at 26 weeks

Clinical Nutrition 41 (2022) 817—-828

Excluded (n=47)

- Missing dietary intake data
at 26 weeks (n=40)

- Implausible low energy

intake data (n=3)

A 4

Available-case analysis (n=688)

A

631 attended at 52 weeks

I

- Implausible high energy
intake data (n=3)
- Missing dietary intake data

at 26 weeks and implausible

low energy intake data® (n=1)

589 attended at 78 weeks

'

536 attended at 104 weeks

'

479 attended at 156 weeks

:

Complete-case analysis (n=479)

Fig. 1. Participant flow diagram. ¢ Energy intake<2520 k]-day~!/600 kcal-day~' or >14,700 kj-day !/3500 kcal-day~! for women and <3360 kJ-day'/800 kcal-day~' or
>17,640 kJ-day~!/4200 kcal-day~! for men was considered implausible.

of meats (e.g. broiling, barbecuing/grilling, roasting, frying, boiling,
and steaming) of meats may be another potential explanation. Liu
et al. [39] found that a higher frequency of open-flame and/or high-
temperature cooking for both red meat and chicken was associated

821

with greater weight gain and an increased risk of obesity and type 2
diabetes in three large US prospective cohorts, which may be
attributed to hazardous substances including acrylamide, hetero-
cyclic aromatic amines, and advanced glycation end products
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Table 1
Characteristics of participants at the start of weight maintenance (8 weeks) or 26 weeks.
All participants® Completers Non-completers P-value

N 688 479 209 —
Socio-demographics
Female, n (%) 471 (68.5) 316 (66.0) 155 (74.2) 0.033
Age (years) 57 (46, 63) 58 (49, 64) 53 (42, 61) <0.001
Ethnicity, n (%) 0.003

Caucasian 595 (86.5) 427 (89.1) 168 (80.4) —

Asian 24 (3.5) 16 (3.3) 8 (3.8) -

Black 19(2.8) 13 (2.7) 6(2.9) -

Arabic 4(0.6) 3(0.6) 1(0.5) —

Other 46 (6.7) 20 (4.2) 26 (12.4) —
Smoking, n (%) 0.025

No 641 (93.2) 454 (94.8) 187 (89.5)

Yes, but less than weekly 17 (2.5) 9(1.9) 8(3.8)

Yes, at least daily 26 (3.8) 13 (2.7) 13(6.2)

Missing 4(0.6) 3(0.6) 1(0.5)
Anthropometrics and body composition®
Body weight (kg) 86.0 + 164 838 + 154 90.8 + 17.6 <0.001
Height (m) 1.7 (1.6, 1.7) 1.7 (1.6, 1.7) 1.7 (1.6, 1.7) 0.138
BMI (kg-m~2) 29.5 (26.6, 33.4) 28.7 (26.0, 32.5) 31.4(28.7, 36.3) <0.001
Fat mass (kg) 334+ 122 313+113 382 +128 <0.001
Waist circumference (cm) 100.1 + 12.6 99.1 + 12.0 102.5 + 13.6 <0.001
Glycaemic and cardiometabolic risk factors®
Fasting plasma glucose (mmol-L~") 5.7+0.5 57 +05 5.8+ 0.6 0.042
HbA;. (mmol-mol~1) 35.0 + 3.1 349 + 3.1 35.2 +3.1 0.324
HbA. (%) 54+03 53+03 54+03 0322
Fasting insulin (mU-L~1) 7.3(5.3,9.9) 6.9(5.1,94) 8.3(5.8,10.7) <0.001
HOMA-IR 1.8(1.3,2.5) 1.7 (1.3,2.4) 2.1(1.4,28) <0.001
Triacylglycerols (mmol-L~') 1.0(0.8,1.2) 0.9(0.8,1.2) 1.0(0.8,1.3) <0.001
TyG index 84+04 83+03 85+04 <0.001
Total cholesterol (mmol-L~1) 41 +0.9 4.0 +0.9 42 +0.9 <0.001
HDL-cholesterol (mmol-L™") 1.1+02 1.1+02 1.1+02 0.301
LDL-cholesterol (mmol-L~1) 24(1.9,29) 24(1.8,2.9) 2.6(2.1,3.1) <0.001
Energy and food intake”
Energy (kJ-day™!) 7035.7 + 1840.3 7107.3 + 1794.5 6871.7 + 1935.5 0.061
Energy (kcal-day ') 1679.2 + 439.2 1696.3 + 428.3 1640.0 + 461.9 0.061
Red meat (g-day ') 34.2 (0, 66.3) 34.0 (0, 63.0) 36.3 (0, 73.5) 0.957
Processed meat (g-day ') 12.0 (0, 29.7) 11.7 (0, 29.2) 12.5 (0, 30.3) 0.524
Dairy products (g-day™!) 317.3 (205.2, 449.8) 343.3 (218.3, 465.5) 260.5 (169.6, 389.2) <0.001
Poultry (g-day 1) 37.2(9.6,70.4) 37.4 (4.9,70.0) 37.2(144,71.2) 0.592
Fish and seafood (g-day ') 30.9 (5.4, 63.7) 31.3(7.5,65.2) 30.5 (0, 60.3) 0.275
Eggs (g-day™!) 21.3(5.2,41.8) 21.3(5.2,42.4) 21.4(5.2,39.3) 0.848
Grains (g-day 1) 208.8 (146.9, 277.2) 204.8 (147.4, 277.0) 217.3 (145.7, 281.0) 0.607
Legumes (g-day ') 0.3 (0, 27.2) 0.1 (0, 25.0) 2.8 (0, 30.4) 0416
Nuts (g-day™') 3.3 (0, 10.8) 3.7 (0, 12.3) 2.5 (0, 8.4) 0.019
Vegetables (g-day ') 179.1 (93.8, 307.8) 187.5(109.8, 308.1) 175.3 (82.2, 305.3) 0.091
Fruits (g-day 1) 169.5 (83.7, 260.1) 173.5 (98.6, 275.3) 153.2 (64.5, 236.7) 0.003

Values represent mean =+ standard deviation, median (25th, 75th percentiles), and the number of participants (%). Differences between completers and non-completers in
baseline characteristics were examined by an independent-samples ¢ test, a Mann—Whitney U non-parametric test, or a 2 test. BMI, body mass index; HbA;., haemoglobin
A;c; HDL-cholesterol, high-density lipoprotein cholesterol; HOMA-IR, homeostatic model assessment of insulin resistance; LDL-cholesterol, low-density lipoprotein

cholesterol; TyG, triacylglycerol-glucose index.
@ Data were collected at 8 weeks.
b Data were collected at 26 weeks.
¢ Participants who entered the weight-maintenance phase.

(AGEs) produced during high temperature cooking. Advanced gly-
cation end products were associated with weight gain, type 2
diabetes, and CVD [40,41]. In a recent randomised controlled-
feeding trial, Gao et al. [42] suggested that fried meat intake
impaired glucose homoeostasis by influencing the gut microbiota
and microbial-host cometabolites.

Most observational studies have taken the amount of red meat
or poultry intake into consideration only, but not the cooking
methods. In the PREVIEW dietary dataset, we also did not include
red meat subgroups with different cooking methods. In addition,
most prospective cohort studies [8—11,43] used hard disease end-
points (i.e. risk of disease) over 5 years or longer, whereas the
present study and RCTs [33,34] used intermediate disease markers
(e.g. fasting insulin, HOMA-IR, triacylglycerols, and HDL-
cholesterol) over a shorter period. Further, red meat consumption
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was found to be related to other unhealthy dietary habits, low
physical activity and smoking [44]. These confounders may be
impossible to measure accurately and to fully adjusted for in
observational studies.

In the present study, we found that higher processed meat
intake was associated with greater weight regain. Many previous
studies also reported associations of processed meat intake with
increased risk of weight gain and obesity [8,45]. During meat
processing, food additives such as nitrites are added and acryl-
amide, heterocyclic aromatic amines, and AGEs might be created as
a result of the Maillard reaction. For instance, bacon and sausages
are commonly high in AGEs especially under frying [46] and AGE
was found to be associated with weight change, which may be
attributed to insulin resistance induced by higher AGE intake [40].
Furthermore, in the present study, we found that weight regain
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Yearly Yearly P value
mean change (95%Cl) mean change (95%Cl)
Processed meat
ABody weight (kg-year™)
Complete-case analysis
Model 1° —_— 0.11(0.05, 0.16) <0.001
Model 2° — 0.18 (0.11, 0.25) <0.001
Available-case analysis
Model 1° —————— 0.12 (0.06, 0.17) <0.001
Model 2° — o« 0.18(0.10,0.25) <0.001
AFat mass (kg-year™)
Complete-case analysis
Model 1° [ — 0.14 (0.06, 0.21) <0.001
Model 2° . e 0.17(0.09,0.25) <0.001
Available-case analysis
Model 1° e 0.14 (0.07, 0.22) <0.001
Model 2° e 0.17(0.09,0.26) <0.001
AWaist circumference (cm-year™)
Complete-case analysis
Model 1° i 0.05 (-0.02, 0.13) 0.138
Model 2° e 0.14 (0.05, 0.23) 0.002
Available-case analysis
Model 1* | . 0.06 (-0.01, 0.13) 0.115
Model 2° . 0.16(0.07,0.24) <0.001
AHbA, (mmol-mol'l-year'l)
Complete-case analysis
Model 1° R 0.04 (0.009, 0.06) 0.009
Model 2° . 0.06 (0.02, 0.10) 0.001
Model 3: main effect of processed meat* | o 0.03 (0.00003, 0.07) 0.050
Model 3: main effect of yearly weight change® 0.15(0.13, 0.18) <0.001
Available-case analysis
Model 1* R 0.04 (0.009, 0.06) 0.009
Model 2° - 0.05 (0.008, 0.09) 0.019
Model 3: main effect of processed meat* e 0.01 (-0.02, 0.05) 0.469
Model 3: main effect of yearly weight change® 0.15(0.13,0.18) <0.001
ATriacylglycerols (mmol-L ™ -year™)
Complete-case analysis
Model 1* lo 0.005 (-0.002, 0.01) 0.158
Model 2° 0.01 (0.001, 0.02) 0.026
Model 3: main effect of processed meat® lo- 0.005 (-0.004, 0.01) 0.264
Model 3: main effect of yearly weight change® 0.03 (0.02, 0.03) <0.001
Available-case analysis
Model 1° o 0.006 (-0.0009, 0.01)  0.086
Model 2° le. 0.01 (0.002, 0.02) 0.018
Model 3: main effect of processed meat* o 0.006 (-0.003, 0.01) 0.187
Model 3: main effect of yearly weight change® 0.02 (0.02, 0.03) <0.001
Fish and seafood intake
ATriacylglycerols (mmoI~L'1~year'1)
Complete-case analysis
Model 1° - -0.01 (-0.02, -0.006) <0.001
Model 2° - -0.01(-0.02,-0.002)  0.022
Model 3¢ - -0.01 (-0.02, -0.002) 0.019
Available-case analysis
Model 1° - -0.02 (-0.03,-0.01)  <0.001
Model 2° - -0.02 (-0.03, -0.005)  0.005
Model 3¢ - -0.01 (-0.03, -0.004) 0.005
T T T T T 1

!
-0.1 0.0 0.1 0.2 0.3

D —— —_—

Inverse association Positive association

Fig. 2. Longitudinal associations of processed meat intake with yearly changes in weight outcomes and glycaemic and cardiometabolic risk factors during 3-year weight main-
tenance. Data are yearly mean change in outcomes and 95% CI, indicating changes in weight outcomes or glycaemic and cardiometabolic risk factors associated with 10-g increment
in processed meat or 20-g increment in fish and seafood, unless otherwise stated. Analyses were performed using a linear mixed model. HbA;., haemoglobin A;.. * Model 1 was
adjusted for age, sex, ethnicity, BMI at 8 weeks, values of outcomes at 8 weeks, and time as fixed effects and intervention centre and participant identifier as random effects. ® Model
2 included all animal-based foods simultaneously and was additionally adjusted for lifestyle factors as fixed effects, including smoking habits, physical activity, energy intake
(kJ-day1), alcohol intake (g-day ), sugar intake, grain intake, legumes intake, nut intake, vegetable intake, and fruit intake (all in g-day—").  Model 3 was additionally adjusted for
yearly weight changes as a fixed effect.
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Fig. 3. Changes in weight outcomes and glycaemic and cardiometabolic risk factors during 3-year weight maintenance by tertiles of processed meat or fish and seafood intake. The
tertiles were defined afresh according to the processed meat or fish and seafood intake at each time points. Values in the figure are estimated marginal mean and 95% CI in changes
in body weight (A), fat mass (B), waist circumference (C), triacylglycerols (D), HbA1. (E), and triacylglycerols (F). Analyses were performed using linear mixed models adjusted for
age, sex, ethnicity, values of outcomes at 8 weeks, BMI at 8 weeks, time, physical activity, alcohol intake (g-day~'), energy intake (kJ-day '), animal-based food intake, sugar intake,
grain intake, legumes intake, nut intake, vegetable intake, and fruit intake (all in g-day ") as fixed effects and participant identifier and intervention centre as random effects. As the
tertiles were defined afresh at each time point, multiple comparisons with Bonferroni adjustment were performed to compare the tertiles at each time point, regardless of the
significance of time and group interaction. Values with the different lowercase letters (a and b) are significantly different, P < 0.05. HbA;., haemoglobin A;..

which resulted from processes meat intake might, in turn, lead to
deteriorating glycaemic and cardiometabolic risk factors. The as-
sociation of obesity with type 2 diabetes and CVD has been re-
ported by many studies [47]. Taken together, findings from our and
other studies imply that compared with meat itself, meat
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processing, preparation, and cooking
important role in health.

methods may play a more

Notably, according to the dietary data at the beginning of the
weight maintenance phase, processed meat was not the main
source of protein for most PREVIEW participants (median intake:
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Yearly Yearly P -value
mean change (95%Cl) mean change (95%Cl)

ABody weight (kg-year™)
Dairy products —_— -0.59 (-0.77, -0.41) <0.001
Poultry — -0.66 (-0.93, -0.40) <0.001
Fish and seafood - -0.58 (-0.88, -0.27) <0.001
Eggs R — -0.93 (-1.42, -0.45) <0.001
Grains —_— -0.54 (-0.78, -0.30) <0.001
Legumes R -0.55 (-0.88, -0.23) <0.001
Nuts —_— -0.69 (-0.96, -0.41) <0.001

AFat mass (kg-year™)
Dairy products e -0.55 (-0.85, -0.26) <0.001
Poultry —_— -0.59 (-0.90, -0.28) <0.001
Fish and seafood —_— -0.67 (-1.03, -0.31) <0.001
Eggs —_— -0.97 (-1.54, -0.40) <0.001
Grains Ee— -0.56 (-0.83, -0.28) <0.001
Legumes EEEEne— -0.67 (-1.03, -0.30) <0.001
Nuts —_— -0.80(-1.12,-0.47) <0.001

AWaist circumference (cm-year'l)
Dairy products I — -0.57 (-0.88, -0.26) <0.001
Poultry —_— -0.46 (-0.80, -0.13) 0.006
Fish and seafood e -0.53 (-0.91, -0.15) 0.006
Eggs s — -0.61 (-1.23, 0.005) 0.052
Grains I — -0.48 (-0.78,-0.19) 0.001
Legumes e — -0.60 (-1.00, -0.20) 0.003
Nuts —_— -0.72 (-1.06, -0.39) <0.001

T T T T
-16 -12 -08 -04 0.0

-

Inverse association

Positive association

Fig. 4. Estimated yearly mean changes (95% ClI) in weight outcomes after isoenergetic substitution of processed meat with other animal- and plant-origin high-protein foods during
3-year weight maintenance. Data are yearly mean change in outcomes and 95% CI, indicating changes in weight outcomes per year associated with replacing 250—300 k]-day~! or
60—72 kcal-day ! of processed meat with other food sources of protein. Analyses were performed using a linear mixed model adjusted for age, sex, ethnicity, values of outcomes at
8 weeks, BMI at 8 weeks, time, physical activity, alcohol intake (g-day~'), energy intake (kJ-day~'), animal-based food intake, grain intake, legumes intake, nut intake (all in 0.5
serving-day~'; 0.5 serving-day~! equals 250—300 kJ-day~! or 60—72 kcal-day~"), vegetable intake, fruit intake, and sugar intake as fixed effects and participant identifier and

intervention centre as random effects.

12 g-day™1), whereas 25% participants had an intake>30 g-day !
and in the highest tertile, 50% participants had an
intake>40 g-day~ . Assuming a 40-g-day™' increment in processed
meat intake in higher vs lower intake group, that would represent a
weight gain of 2.04 kg (2.4% of initial body weight), an increment in
waist circumference of 1.92 cm (1.9% of initial waist circumference),
an increment in HbA;. of 0.60 mmol mol~! (1.7% of initial HbA;(),
and an increment in triacylglycerols of 0.12 mmol-L™! (12% of initial
triacylglycerols) at the end of the study (at 3 years). There may be
clinical significance in changes in weight and triacylglycerols. For
changes in waist circumference and HbA, the effect sizes are small
and whether it is the usual fluctuation of these two outcomes is
needed to be examined by other longer-term studies.

Compared with red meat, other foods, especially plant-based
foods, contain less saturated fat and more fibre, unsaturated fat,
antioxidants, and polyphenols [48]. Some pervious RCTs examined
the effect of replacement of red meat with plant-based foods (e.g.
legumes and mushrooms) on weight change [49,50]. In the current
study, fish and seafood intake was inversely associated with tri-
acylglycerols and TyG index, independent of weight change. In a
meta-analysis of RCTs, however, Guasch-Ferré et al. [48] argued
that substituting red meat with plant-based foods, but not with
fish, led to more favorable changes in blood lipids and lipoproteins.
In that analysis, the authors did not investigate red meat and pro-
cessed meat separately. In the current study, we found that poultry
and eggs might also be a choice for weight maintenance. Although
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we did not observe any associations of these animal-based foods
with metabolic outcomes, replacing processed meat with them was
associated with improved weight outcomes, HbAi., or tri-
acylglycerols. A recent meta-analysis of prospective cohort studies
also suggested that replacing processed meat with poultry was
inversely associated with the risk of CVD [18]. In terms of HbA;, we
found that after adjustment for weight change, no associations of
replacement of processed meat with other foods showed signifi-
cance. However, Wiirtz et al. [14] reported that the association of
replacement of red meat with both plant- and animal-based foods
with risk of type 2 diabetes was independent of weight change in 3
US prospective cohorts.

The present study has some strengths. First, this is the first
multi-centre, long-term study to investigated animal-based food
choice and food substitutions for weight maintenance and meta-
bolic health in individuals who experienced large weight loss.
Second, the population in our study had a wide range of age,
including young, middle-aged, and older adults. Furthermore, as
outcomes were measured repeatedly at different time points, a
large number of observations were obtained, which provided a
sufficient statistical power to adjust for important confounders
including plant-based foods and physical activity.

Nonetheless, this study also has limitations. First, the attrition
rate was higher than expected. In order to reduce the attrition bias,
we conducted both available-case and complete-case analyses.
Second, fat mass was measured using different measurement tools
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Yearly Yearly P -value
mean change (95%Cl) mean change (95%Cl)
AHbA, (mmol-mol ™ .year™)

Model 2°

Dairy products —_— -0.14 (-0.27, -0.009) 0.036
Poultry S -0.18 (-0.32, -0.04) 0.014
Fish and seafood I— -0.17 (-0.34, -0.008) 0.039
Eggs _ -0.35(-0.61, -0.09) 0.010
Grains ——— -0.14 (-0.26, -0.01) 0.030
Legumes —— -0.16 (-0.33, 0.006) 0.059
Nuts ———— -0.23 (-0.37, -0.09) 0.002
Model 3°

Dairy products — -0.03 (-0.16, 0.09) 0.579
Poultry — -0.06 (-0.19, 0.07) 0.370
Fish and seafood —_— -0.07 (-0.22, 0.09) 0.392
Eggs I— -0.24 (-0.49, 0.005) 0.055
Grains — -0.05 (-0.17, 0.06) 0.360
Legumes __l  -0.006(-0.16,0.15) 0.938
Nuts [ -0.10 (-0.23, 0.03) 0.144

ATriacylglycerols (mmol-L ™ year™)

Model 2°

Dairy products - -0.04 (-0.07, -0.01) 0.008
Poultry - -0.05 (-0.09, -0.02) 0.003
Fish and seafood - -0.07 (-0.11, -0.03) <0.001
Eggs — -0.04 (-0.11, 0.02) 0.219
Grains —| -0.03 (-0.06, -0.004) 0.029
Legumes —— -0.05 (-0.09, -0.01) 0.012
Nuts —-— -0.05 (-0.09, -0.02) 0.002
Model 3°

Dairy products — -0.02 (-0.05, 0.006) 0.117
Poultry - -0.03 (-0.06, 0.001) 0.058
Fish and seafood —— -0.06 (-0.09, -0.02) 0.004
Eggs —— -0.02 (-0.08, 0.05) 0.060
Grains —of -0.02 (-0.04, 0.01) 0.272
Legumes ol -0.03 (-0.07, 0.01) 0.176
Nuts N -0.03 (-0.06, 0.003) 0.074

T T T T T T T 1
-06 -04 -02 00 02
-~ R —

Inverse association
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Fig. 5. Estimated yearly mean changes (95% CI) in weight outcomes and glycaemic and cardiometabolic risk factors after isoenergetic substitution of processed meat with other
animal- and plant-origin high-protein foods during 3-year weight maintenance. Data are yearly mean change in outcomes and 95% CI, indicating changes in glycaemic and car-
diometabolic risk factors per year associated with replacing 250—300 kJ-day " of processed meat with other food sources of protein. Analyses were performed using a linear mixed
model. HbA,, haemoglobin A;.. * Model 2 was adjusted for age, sex, ethnicity, values of outcomes at 8 weeks, BMI at 8 weeks, time, physical activity, alcohol intake (g-day~"),
energy intake (kj-day~!), animal-based food intake, grain intake, legumes intake, nut intake (all in 0.5 serving-day~!; 0.5 serving-day ! equals 250—300 kj-day~! or
60—72 kcal-day "), vegetable intake, fruit intake, and sugar intake as fixed effects and participant identifier and intervention centre as random effects. ® Model 3 was additionally

adjusted for yearly weight change as a fixed effect.

(i.e. DEXA in the UK, Australia, and New Zealand and bioelectrical
impedance in Finland) and some previous studies demonstrated
that compared with DEXA, the bioelectrical impedance analysis
may underestimate fat mass in obese individuals [51,52]. Third, in
the tertile analysis, participants were divided according to intake
of animal-based foods at each time point instead of being
randomly allocated. Accordingly, participants’ baseline character-
istics among the tertiles may be unbalanced and the statistical
phenomenon “regression to the mean”, which makes natural
variation in outcomes look like real change [53], may differently
affect the tertiles and cannot be counteracted or adjusted for.
Moreover, our findings cannot provide a deep insight into

consumption of dairy products and red meat, because we did not
include specific dairy product subgroups (e.g. whole-fat and
reduced-fat dairy products) and red meat with different cooking
methods or preparation. Finally, as the present secondary analysis
is observational and exploratory, residuals and unmeasured con-
founders are possible. Smoking status, an important confounder,
was collected at baseline only in this study. Adjustment for base-
line values instead of a time-varying variable may cause bias,
because smokers may quit smoking during a 3-year healthy life-
style modification. With regard to the tertiary analysis, the food
replacement was inferred according to a statistical model and no
actual replacement ever occurred in the study. Taken together,
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given the secondary and tertiary nature of the present study, our
findings should be interpreted with caution.

5. Conclusion

Higher consumption of processed meat, but not total meat or
red meat or poultry, may be associated with long-term weight
regain and deteriorating glycaemic and cardiometabolic risk factors
after low-energy diet-induced large and rapid weight loss.
Replacing processed meat with both animal- and plant-based foods
could improve weight maintenance and glycaemic and car-
diometabolic risk factors. Our findings should be confirmed by solid
conclusions based on RCTs. In addition, as cooking methods may be
a key confounder, future studies should pay more attention to
cooking methods of red meat and other animal-based foods.
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