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Effect of black ginseng 
and silkworm supplementation 
on obesity, the transcriptome, 
and the gut microbiome 
of diet‑induced overweight dogs
Miey Park1,4, Ki Hyun Kim2,4, Varun Jaiswal1, Jihee Choi1, Ju Lan Chun2, Kang Min Seo2, 
Mi‑Jin Lee3 & Hae‑Jeung Lee1*

Like humans, weight control in overweight dogs is associated with a longer life expectancy and 
a healthier life. Dietary supplements are one of the best strategies for controlling obesity and 
obesity‑associated diseases. This study was conducted to assess the potential of black ginseng 
(BG) and silkworm (SW) as supplements for weight control in diet‑induced overweight beagle dogs. 
To investigate the changes that occur in dogs administered the supplements, different obesity‑
related parameters, such as body condition score (BCS), blood fatty acid profile, transcriptome, and 
microbiome, were assessed in high energy diet (HD) and HD with BG + SW supplementation (HDT) 
groups of test animals. After 12 weeks of BG + SW supplementation, total cholesterol and triglyceride 
levels were reduced in the HDT group. In the transcriptome analysis, nine genes (NUGGC , EFR3B, 
RTP4, ACAN, HOXC4, IL17RB, SOX13, SLC18A2, and SOX4) that are known to be associated with 
obesity were found to be differentially expressed between the ND (normal diet) and HD groups as well 
as the HD and HDT groups. Significant changes in some taxa were observed between the HD and ND 
groups. These data suggest that the BG + SW supplement could be developed as dietary interventions 
against diet‑induced obesity, and obesity‑related differential genes could be important candidates in 
the mechanism of the anti‑obesity effects of the BG + SW supplement.

Increased food availability, excessive nutrient intake, and reduced movement are known to increase the risk of 
obesity and related diseases, such as diabetes and metabolic  syndrome1. Many studies have demonstrated that 
the organs affected by metabolic syndrome contain excess levels of  triglycerides2–4. Lipids have fatty acids (FAs) 
as part of their structure, which play a variety of biological roles in health maintenance and function as signal-
ing  molecules5. Imbalance in lipid signaling pathways can lead to allergy, autoimmunity, chronic inflammation, 
and metabolic and degenerative  diseases6. Bioactive lipids are involved in various inflammatory processes and 
modulate immune cell function to regulate the wide range of responses that induce the pathologies in metabolic-
related  diseases7.

Body condition score (BCS) is a semi-quantitative, straightforward method of assessing body fat composition 
that divides the continuum of superficial body composition into a finite number of ordered  categories8. BCS 
can also be used as an alternative tool for predicting specific  diseases9. The BCS system for dogs is based on a 
nine-point scale; an ideal BCS is 4–5, 6–7 is overweight, and a score > 8 is  obese10. Numerous factors can cause 
obesity, including genetics, the amount of physical activity, and the energy content of the  diet11. The prevalence 
of overweight and obesity among dogs is 33.5% and 7.6%, respectively, and the prevalence increases with age, 
up to about 10 years  old12. Transcriptome profiling of obese and insulin-resistant mice highlighted differences 
in signaling, lipid metabolism, and  inflammation13,14. Metabolomics and microbiome analysis have shown the 
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potential to evaluate changes in metabolic  states15,16, and the identification of metabolic patterns associated with 
obesity might be useful in preventing metabolic-related diseases and even  cancer17.

Multiple studies have shown the effects of diet on the gut microbiota, and the gut microbiota has been 
described as an essential contributor to the development of obesity-related metabolic  dysfunction18–22. A high-fat 
diet (HFD) can alter the dominant gut microbiota, and its  metabolites23. Prolonged HFD feeding in mice resulted 
in significant changes in the intestinal microbiome and brain metabolites, induced depression-like behavior, and 
reduced the abundance of the phylum Bacteroidetes in the intestine of depressed  subjects24.

Ginseng has been used as a dietary supplement and has been shown to have therapeutic effects against 
obesity, cancer, and cardiovascular disease and improve immune and cognitive  function25,26. Previous stud-
ies have also reported that ginseng saponin inhibits pancreatic lipase activity in vitro, and ginsenoside plays a 
significant role in the antidiabetic effects of ginseng in obese diabetic  mice27,28. Orally administrated compound 
K suppressed the elevation of plasma triglyceride in the  dog29. Black ginseng (BG) is prepared from raw white 
ginseng by steaming and drying it nine times. This process turns it black, which is accompanied by chemical 
changes in secondary metabolites. After processing, black ginseng contains more secondary metabolites than 
other  ginseng30. Based on its pharmacological effects, BG has been shown to possess higher biological activity 
levels than red  ginseng30. Although BG has been shown to be effective for obesity, the anti-obesity effect of BG 
in canines has not yet been investigated.

Recently, the silkworm (SW) Bombyx mori has received increased scientific attention, as several studies 
have reported its beneficial effects against liver  damage31,32,  hyperglycemia33, type 2  diabetes34, and Parkinson’s 
 disease35. In addition, 1-deoxynojirimycin (1-DNJ), a potent α-glucosidase inhibitor found in mulberry leaves 
and silkworms, was shown to possess anti-obesity, anti-hyperglycemic, and anti-tumor  effects36. Silkworms are 
used as food, and they are an essential source of protein in some mountainous regions in  Asia37. Compared to 
soy proteins, silkworm proteins have higher or similar levels of essential amino acids, except isoleucine and 
leucine, and diverse fatty acids, such as palmitic acid, oleic acid, linoleic acid, and stearic  acid37. Treatment of 
rats with silkworm oil for 18 weeks significantly reduced total cholesterol and triglyceride levels in the blood and 
markedly increased high-density lipoprotein  cholesterol38. Moreover, no hepatotoxicity or mutation has been 
reported following ingestion of  silkworms39,40. In addition, SW treatment significantly induced phosphorylation 
of AMPK and ACC in obesity mouse liver. AMPK activation is an essential process to inhibits the FAS protein 
level and activation of SREBP-1c. SW showed anti-obesity effects in a mouse  model41.

Our previous studies reported that the BG and ginsenoside Rb1 promote the browning effect by inducing 
UCP1 expression in white  adipocytes42. Also the BG and SW ameliorated nonalcoholic fatty liver disease in free 
fatty acid-induced liver cells and high-fat/high-fructose diet  mice41,43. We would like to confirm the anti-obesity 
effects of BG and SW treatment in dog models. This study aimed to evaluate the impacts of BG and SW supple-
mentation in weight control for 16 weeks in overweight beagle dogs by analyzing the serum fatty acid profiles, 
RNA expression in whole blood, and gut microbiome, which is involved in energy metabolism.

Materials and methods
Animals and diet. Nine (five males and four females) healthy, spayed and neutered 22-month-old beagle 
dogs (body weight [BW] 8.4 ± 0.61 kg and BCS 4.2 ± 0.17) were used in this study. All dogs were housed under 
controlled environmental conditions and were professionally supervised at the National Institute of Animal 
Science (Wanju-gun, Jeollabuk-do, Korea) of the Rural Development Administration during the study. Ethical 
approval for this study (NIAS-2019-370) was obtained, and the study was conducted in accordance with the 
guidelines of the Animal Care and Use Committee of the National Institute of Animal Science. After 6 months 
of acclimatization, the dogs were randomly divided into two groups: the normal diet group (ND; optimal energy 
intake) and the high energy intake group (HD). After a 4-week high-energy induction period, the beagle dogs 
were randomly divided into three groups: the normal diet (ND: optimal energy intake) + placebo, HD (high 
energy intake) + placebo, and HDT (high energy intake + 100 mg·kg−1·day−1 black ginseng [BG (Table 1)]43 + 10
0 mg·kg−1·day-1 silkworm powder [SM (Table 2)])41 for 12 weeks. All dogs were housed under similar conditions 
and fed basic feed once a day (at 10:00 am) that is fully balanced and meets the nutritional requirements of dogs 
(Iskhan All-life33®; Wooriwa Ltd., Korea; 4,100 kcal/kg metabolizable energy, > 33% protein, > 20% fat, > 19% car-
bohydrates, and < 12% moisture) as suggested by the Association of American Feed Control Officials (AAFCO, 
2018). The HD group was provided additional wet feed (ZIWI® peak Tripe & Lamb recipe, Ziwi Ltd., New Zea-
land; 1,150 kcal/kg metabolizable energy, > 9% protein, > 4% fat, > 5% carbohydrates, and < 78% moisture), which 
was equivalent to 20% of the energy consumed from basic food. The metabolic energy requirements (MER) of 
dogs were calculated by AAFCO’s MER calculation method following as; MER = 132 × metabolic body weight 
(mBW). The BG and SW supplements were soft encapsulated and fed to the dogs once a day with the morning 
feed (at 10:00 am). Maltodextrin (1000 mg) was used as a placebo and was also soft encapsulated and fed to the 
ND and HD groups once a day with the morning feed. All dogs had free access to water and ran outside for sev-
eral hours each day throughout the study period. Each experimental dog was placed in a separate breeding space 
(1.8 m × 2.6 m) of the facility and raised under controlled conditions at 22–24 °C, 60–80% humidity, and a 12-h 
light–dark cycle. Food intake was measured daily, and the BCS was evaluated once a week for 16 weeks using a 
9-point scale based on the criteria of Laplamme et al.8.

Blood sampling, serum fatty acid profile analysis, and fecal sampling. Blood samples were col-
lected from the dogs at treatment initiation and after 4, 8, and 12 weeks. Blood was collected into a tube, left for 
more than 30 min, and then centrifuged at 400 × g for 10 min at 4 °C. The serum was stored at − 80 °C until use. 
Blood samples were also collected at the end of the experiment (after 12 weeks of supplementation) for RNA-Seq 
analysis. Whole blood (500 μl) was collected from the dogs into RNAprotect® Animal Blood Tubes (QIAGEN, 
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Table 1.  Composition of ginsenosides in black ginseng (BG). *Sum of individual ginsenoside content.

Ginsenosides BG, Root (mg/g)

Rg1 0.12

Re 0.21

Rf 0.64

Rh1(S) 0.84

Rg2(S) 1.16

Rg2(R) 0.64

Rh1(R) 0.41

Rb1 3.11

Rc 1.56

F1 0.00

Rb2 1.99

Rb3 0.30

Rd 0.98

F2 3.56

Rg3(S) 1.78

Rg3(R) 1.36

PPT(S) 0.00

PPT(R) 0.00

K 2.34

Rh2(S) 0.00

Rh2(R) 0.00

Total* 21.00

Table 2.  Metabolites identified in a silkworm powder (SW). *Tentative metabolites based on variable 
important projection (VIP) analysis with a cutoff value of 0.7 and p-value < 0.05; ! Identification: STD, Standard 
@MS fragment patterns detected.

No Tentative identification * Unique mass (m/z) ID ! No Tentative identification Unique mass (m/z) ID

Amino acids Etc

1 Valine 144 STD MS @ 22 Butanediol 117 MS

2 Serine 204 STD 23 Hydroxylamine 133 MS

3 Threonine 117 STD 24 Pyruvic acid 133 MS

4 β-Alanine 174 MS 25 Urea 189 MS

5 Aspartic acid 232 STD MS 26 Hydroxybenzoic acid 267 STD MS

6 Pyroglutamic acid 156 MS 27 α-Glycerophosphoric acid 299 MS

7 Glutamic acid 246 MS 28 1-Deoxynojirimycin 420 STD

8 Asparagine 116 STD MS 29 Pantothenic acid 291 MS

9 Lysine 156 STD MS 30 Phytol 143 MS

10 Tyrosine 218 STD MS Non-identifications

Sugar and sugar derivatives 31 N.I. 1 171 ‒

11 Glyceric acid 189 MS 32 N.I. 2 89 ‒

12 Carbohydrate 1 103 MS 33 N.I. 3 123 ‒

13 Carbohydrate 2 205 MS 34 N.I. 4 86 ‒

14 Ribonic acid 103 MS 35 N.I. 5 86 ‒

15 D-Glucose 205 STD MS 36 N.I. 6 57 ‒

16 Carbohydrate 3 319 MS 37 N.I. 7 84 ‒

17 myo-Inositol 217 STD MS 38 N.I. 8 131 ‒

18 Carbohydrate 4 319 MS 39 N.I. 9 205 ‒

19 Glyceryl-glycoside 204 MS 40 N.I. 10 117 ‒

Fatty acids 41 N.I. 11 129 ‒

20 Stearic acid 117 STD MS 42 N.I. 12 245 ‒

21 Oleamide 131 MS 43 N.I. 15 129 ‒
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Hilden, Germany) and was stored at − 80 °C until use. Total RNA was purified from thawed RNA-preserved 
blood using the RNeasy Protect Animal Blood Kit (QIAGEN, Hilden, Germany) according to the manufacturer’s 
guidelines. Total cholesterol (TC) and triglyceride (TG) levels were analyzed using commercial kits according to 
the manufacturer’s protocols. Fecal samples were collected at the end of treatment and stored at − 80 °C until use.

RNA processing and sequencing. Total RNA (500 ng) was used to prepare whole transcriptome sequenc-
ing libraries. Whole transcriptome RNA was enriched by depleting ribosomal RNA (rRNA), and a complete 
transcriptome sequencing library was generated using the MGIEasy RNA Directional Library Prep Kit (MGI) 
according to the manufacturer’s instructions. After rRNA depletion, the remaining RNA was fragmented into 
small pieces by treatment with divalent cations under elevated temperatures. Then, the cleaved RNA fragments 
were copied into first-strand cDNA using reverse transcriptase and random primers. Strand specificity was 
achieved in RT directional buffer, followed by second-strand cDNA synthesis. An additional A base was added 
to the cDNA fragments and then an adapter was ligated. The products were then purified and enriched by PCR 
to create the final cDNA library.

The double-stranded library was quantified using the QauntiFluor ONE dsDNA System (Promega, Madison, 
WI, USA) and 330 ng in a total volume of 60 μl or less. The library was cyclized at 37 °C for 60 min, digested at 
37 °C for 30 min, and then the circularization product was cleaned up. The library was incubated at 30 °C for 
25 min with DNA nanoball (DNB) enzyme. Finally, the library was quantified using the QauntiFluor ssDNA 
System (Promega) and sequenced using the MGIseq system (MGI) to generate 150 bp paired-end reads.

RNA‑Seq pipeline for assembly and differential expression analysis. The NGS system generated 
pair-end reads as output, which were subjected to quality control using  AfterQC44. Filtering, trimming, and 
error removal were performed with default parameters to obtain high quality reads. These reads were aligned 
with the reference genome using  HISAT245. The dog (Canis lupus familiaris) CanFam3.1 reference genome 
assembly released by The Genome Reference Consortium was used for the alignment of reads from all samples, 
and the resulting alignment files were saved as Sequence Alignment Map (SAM) files. The SAM files were sorted 
and converted to BAM files using  SAMtool46. The BAM files were used for the assembly analysis using StringTie 
with the -e option to combine the assembly results of all nine samples for differential expression  analysis47. A 
Python script (prepDE.py) was used to combine the assembly results for all nine samples. Finally, for the expres-
sion analysis, a matrix consisting of the read count values, corresponding to every assembled gene/transcript, 
was created. The gene expression of all samples, in the form of a gene count table, was used in iDEP.9248 for 
differential expression-related analyses using DESeq2 and EdgeR. In the analysis, the default threshold false 
discovery rate (FDR), < 0.1, and a minimum fold change of 2 were used to identify the differentially expressed 
genes (DEGs).

Functional enrichment of differentially expressed genes. The DEGs identified from the three main 
comparisons (ND versus HD, ND versus HDT, and HD versus HDT) were subjected to functional enrichment 
analysis through  PANTHER49 (Protein ANalysis THrough Evolutionary Relationships) using Canis lupus famil-
iaris as the reference organism for the analysis. The PANTHER provides results based on biological process, 
cellular component, molecular function, protein class, and pathway of the given genes, which can be stored as 
figures and excel tables.

Identification of the important DEGs. Common DEGs in different comparisons were identified through 
subset analysis using  InteractiVenn50. Finally, the DEGs that had contrasting differential expression when com-
paring ND and HDT with HD, that is, genes that were upregulated in the HD group when compared to the ND 
group and downregulated in the HDT group when compared to the HDT group, were identified. Similarly, genes 
that were downregulated the HD group when compared to the ND group and upregulated in the HDT group 
when compared to the HD group.

Protein–protein interaction networks. The protein–protein interaction network was analyzed using 
STRING version-1151. The Ensembl IDs of the DEGs were used to generate a protein–protein interaction net-
work using Canis lupus as the reference organism.

Quantitative real time PCR analysis. Total RNA was isolated from whole blood using an RNA extrac-
tion kit (iNtRON Biotechnology, Gyeonggi-do, Korea). RNA (50 ng) was reverse transcribed to cDNA using the 
iScript cDNA synthesis kit (BioRad, Hercules, CA, USA). Real-time PCR was performed with TB Green Master 
Mix (TaKaRa Bio, Otsu, Japan) and was analyzed using QuantStudio 3 (Thermo Fisher Scientific, San Jose, CA, 
USA). The primer sequences used for PCR are shown in Supplementary Table 1 and were normalized to β-actin.

Microbiome analysis. Fecal DNA was extracted from 180–220 mg samples of feces using the NucleoSpin® 
DNA Stool Kit (Macherey–Nagel, Germany) according to the manufacturer’s guidelines. The sequences of the 
16 s rDNA V3 and V4 hypervariable regions were amplified according to the manufacturer’s instructions. The 
following primers were used to amplify the V3 and V4 regions: forward 5′-TCG TCG GCA GCG TCA GAT GTG 
TAT AAG AGA CAG CCT ACGGGNGGC WGC AG-3′ and reverse 5′-GTC TCG TGG GCT CGG AGA TGT GTA 
TAA GAG ACA GGA CTACHVGGG TAT CTA ATC C-3′. Illumina adapter overhang sequences were added to the 
gene-specific sequences. The locus-specific sequences were as follows: forward overhang 5′-TCG TCG GCA GCG 
TCA GAT GTG TAT AAG AGA CAG-3′ and reverse overhang 5′-GTC TCG TGG GCT CGG AGA TGT GTA TAA 
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GAG ACAG-3′. The PCR products were purified using KAPA HiFi HotStart ReadyMix (KAPA Biosystems, USA) 
and an Agencourt AMPure Xp system (Beckman Coulter Genomics, USA). The libraries were sequenced on an 
Illumina MiSeq instrument (2 × 300 paired-end sequencing).

Sequencing data analysis. The sequenced amplicons from selected samples were processed and ana-
lyzed using a recently updated pipeline for microbiome analysis, Quantitative Insights Into Microbial Ecology 
(QIIME2 version 2020.11)52. Pair-end reads were imported into the QIIME2 pipeline and visualized graphically 
for quality scoring. Divisive amplicon denoising algorithm 2 (DADA2) was used for trimming, de-noising, fil-
ter chimeras, and removing reads with low-quality  scores53. A feature table of the amplicon sequence variants 
(ASVs) was constructed using downstream in QIIME2. Different cutoff values were used to trim the forward and 
reverse reads in order to achieve the optimal read retention count and length for DADA2 analysis. The sequences 
of all ASVs obtained from the DADA2 analysis were subjected to multiple sequence alignment to construct a 
masked, rooted phylogenetic tree using the align-to-tree-mafft-fast tree pipeline in the q2-phylogeny plugin, 
which uses  mafft54 for multiple sequence alignment and  FastTree55 to construct phylogenetic trees.

Taxonomic annotation. Taxonomic annotation of all ASVs/features/operational taxonomic units (OTUs) 
was carried out using the q2-feature-classifier module of QIIME2, which uses a classify-sklearn naïve Bayes 
taxonomy classifier trained on the Greengenes 13_8 99%  OTUs56. Finally, a bar plot was drawn to visualize the 
taxonomic annotation of each sample using the “qiime taxa barplot” module. Then, a Krona plot was created, 
which provides a hierarchical, interactive visualization of  taxonomy57.

Diversity analysis. Alpha and beta diversity metrics were calculated using the q2-diversity module. Alpha 
diversity metrics incorporated the information from Shannon’s diversity index (a qualitative measure of commu-
nity richness), observed features (a qualitative measure of community richness), Faith’s phylogenetic diversity (a 
qualitative measure of community richness that incorporates phylogenetic relationships between features), and 
evenness (or Pielou’s evenness; a measure of community evenness). Similarly, the beta diversity metrics incor-
porated Jaccard distance (a qualitative measure of community dissimilarity), Bray–Curtis distance (a quantita-
tive measure of community dissimilarity), unweighted UniFrac distance (a qualitative measure of community 
dissimilarity that incorporates phylogenetic relationships between features), and weighted UniFrac distance (a 
quantitative measure of community dissimilarity that incorporates phylogenetic relationships between features).

Differential abundance of taxa. Lastly, to estimate and visualize the differential abundance of taxa among 
groups (according to treatment), linear discriminant analysis effect size (LEfSe) was  used58. The taxonomy and 
ASV table results from qiime2, along with metadata information, were used to prepare the LEfSe input format 
file using Dokdo (https:// github. com/ sbslee/ dokdo), and the converted input file was subjected to LEfSe analysis. 
Graphs depicting differences in the microbiome communities and cladograms were drawn for visualization.

Statistical analysis. Statistical analysis was performed using GraphPad Prism 5.03 (GraphPad Software, 
San Diego, CA, USA) and SPSS (version 17.0). One-way ANOVA and Tukey’s post-hoc tests were used to ana-
lyze the real-time PCR results. Analysis of covariance (ANCOVA) was used to exclude gender effects, and gender 
factors are treated as covariates. The results of weight and BCS were analyzed as repeated-ANCOVA to assess the 
impact over time. And the results of the animal experiments were analyzed using two-way ANOVA and Bonfer-
roni’s post-tests to compare replicate means by row. All data are expressed as mean ± SEM. Statistical significance 
was set at P < 0.05.

Ethical approval. This research study was approved by the Animal Care and Use Committee of the National 
Institute of Animal Sciences (Ref: NIAS-2019–370), Republic of Korea. The details of the experimental designs, 
sampling method, feeding protocol, and criteria for the end of the humanitarian experiment (weight loss of more 
than 20%, change of feed and water intake, or death, etc.) were performed in accordance with relevant guidelines 
and regulations of the Institute. We confirming this study is reported in accordance with ARRIVE guidelines 
(https:// arriv eguid elines. org).

Results
Effects of black ginseng (BG) and silkworm (SW) supplements on overweight dogs. The mean 
initial weight of the dogs in all groups was 8.4 ± 0.61 kg. After 4 weeks, significantly higher weight gains were 
observed in the HD group than in the ND group as a result of the additional wet feed provided to the HD group 
(Fig. 1a and Table 3). The BCS in the HD and HDT groups were higher than that in the ND group, and the BCS 
of the HD group was significantly higher than that of the ND group after 5 weeks (Fig. 1b). The increases in 
weight and BCS of the HDT group (BG [100 mg/kg/day] and SW [100 mg/kg/day]), were lower than those of 
the HD group at 4 and 8 weeks, respectively, but the differences were not significant. We evaluated serum TC 
and TG levels in all groups during the 12 weeks of BG + SW supplementation. Serum TC levels were significantly 
higher (p < 0.001) in the HD group than in the ND group. However, after BG + SW supplementation for 8 and 
12 weeks, serum TC levels were significantly lower in the HDT group (p < 0.05) than in the HD group (Fig. 1c), 
and serum TG was significantly lower in the HDT group (p < 0.05) than in the HD group at 12 weeks (Fig. 1d).

Preprocessing and alignment of reads. To assess the effect of BG + SW supplementation on gene 
expression in the overweight HD and HDT groups, we carried out RNA sequencing to analyze the transcriptome 

https://github.com/sbslee/dokdo
https://arriveguidelines.org
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profile in whole blood samples. Preprocessing and quality control were performed to obtain high quality reads 
for alignment with the reference genome. The high quality reads (> 98% in all samples) obtained after preproc-
essing, including trimming, error removal, and quality control (Supplementary Table 2), were subjected to align-
ment, and every read used in the alignment had a high alignment rate (average overall alignment rate > 95%) 
with the reference genome (Supplementary Table 2). The alignment files were used to assemble the transcripts/
genes for further expression analysis.

Figure 1.  Comparison of weight gain, body condition score (BCS), serum TC, and TG in overweight beagle 
dogs with BG&SW supplements treatment. (a) Weight gain. (b) BCS. (c) Serum TC. (d) Serum TG. *p < 0.05, 
**p < 0.01, and ***p < 0.001 vs. ND. @p < 0.05 vs. HD. ND normal diet group, HD high energy intake group, HDT 
high energy intake with BG&SW supplements treatment group.

Table 3.  Feed and energy intake and body weight. ND optimal energy intake + placebo, HD high energy 
intake + Placebo, HDT high energy intake + 100 mg·kg−1·day−1 BG + 100 mg·kg−1·day−1 SW; SEM standard error 
mean, ANCOVA analysis of covariance, R- ANCOVA repeated-ANCOVA, FCR feed conversion rate, BCS body 
condition score. a,b Data without same superscript in a row significantly differ (P < 0.05).

ND HD HDT SEM

P-value

ANCOVA R-ANCOVA

Feed intake, g/day 221b 348a 338a 56  < 0.001 –

Energy intake, kcal/day 828 920 887 15 0.101 –

FCR, kg/kg 6.24 7.41 6.17 2.42 0.832 –

Body weight

Initial, kg 8.31 8.24 8.51 0.61 0.672 –

Finish, kg 9.59 10.73 10.60 1.24 0.308 0.171

Change rates, % 117b 133a 125ab 11.5 0.169 0.045
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Transcriptome assembly and expression analysis. The alignment was used to assemble the genes and 
transcripts. Then, the read counts and fragments per kilobase of transcript per million mapped reads (FPKM) 
for all assembled genes/transcripts were calculated. Heat maps and clustering were generated based on the differ-
entially expressed genes. A heatmap with hierarchical clustering revealed that samples from the same group were 
clustered together (Fig. 2a). In the principal component analysis plot, the HD and HDT groups were clustered 
tightly in separate locations, but the ND group was loosely clustered in the middle of the graph (Fig. 2b). Based 
on a cutoff FDR of 0.1 and a minimum fold change of 2, 47, and 109 genes/transcripts were upregulated and 
downregulated, respectively, when the HD group was compared to the ND group. Similarly, 11 and 147 genes/
transcripts were upregulated and downregulated, respectively, when the HDT group was compared with the ND 
group. Finally, 41 and 31 genes/transcripts were upregulated and downregulated, respectively, when the HDT 
group was compared to the HD group (Fig. 3a). DEGs were also plotted in MA and volcano plots to visualize 
the differences (Fig. 3b–e).

Functional enrichment analysis. The upregulated and downregulated genes were subjected to functional 
enrichment analysis according to biological process, cellular component, molecular function, protein class, and 
pathway using PANTHER (protein analysis through evolutionary relationship). Most DEGs had molecular 
functions related to binding and catalytic activity, which can be altered by changes in obesity/fat-related mecha-
nisms (Supplement Table 3). We compared the upregulated DEG-containing pathways between the ND and HD 
groups and the downregulated DEG-containing pathways between the HD and HDT groups. Ten pathways were 
common; these pathways were upregulated in the HD group and reduced by the BG + SW supplement in the 
HDT group (Supplement Table 3).

Common DEGs in the comparison of different groups and the protein–protein interaction net‑
work. The comparisons between the ND and HD groups and the HD and HDT groups were the most impor-
tant in this study. Thus, the upregulated and downregulated DEGs were plotted in a Venn diagram, and six genes 
(NUGGC , EFR3B, RTP4, FAM83D, CDC45, and ACAN) were downregulated in the HD group when compared 
to the ND group and upregulated in the HDT group when compared to the HD group. Similarly, seven other 
genes (HOXC4, IL17RB, SOX13, SLC30A8, SLC18A2, RHEX, and SOX4) were upregulated in the HD group 
when compared to the ND group and downregulated in the HDT when compared to the HD groups (Fig. 4a). 
Finally, a protein–protein interaction network was constructed using all the DEGs using STRING version 11 
(Fig. 4b). The constructed network had significantly more interactions than expected from the results, which 
indicated that there must be a pattern in the differentially expressed genes observed in the study.

Validation by real‑time polymerase chain reaction. To validate the important upregulated and down-
regulated genes in the ND, HD, and HDT groups, we conducted a real-time polymerase chain reaction (PCR) 
experiment using whole blood samples from the beagle dogs. We used β-actin as a control for gene expression. 
The relative gene expression levels of NUGGC  and ACAN were significantly higher in the HDT group than in the 
HD group. The expression levels of HOXC4, IL17RB, SOX13, and SLC18A2 were significantly higher in the HD 
group than in the ND group. HOXC4 and SLC18A2 gene expression levels in the HDT group returned to levels 
similar to those in the ND group (Fig. 5).

Figure 2.  Hieradical clustering and PCA plot of differentially expressed genes. (a) Heat map showing 
hierarchical clustering of the samples on the basis of the differential expressed genes. (b) Principal Component 
Analysis (PCA) plot using the first and second principal components. ND normal diet group, HD high energy 
intake group, HDT high energy intake with BG&SW supplements treatment group.
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Gut microbiome diversity analysis. A total of nine samples, three samples from each group, were ana-
lyzed by 16S rRNA sequencing. A total of 8,880,030 pair-end reads were obtained, and after preprocessing and 
chimera removal using DADA2, 428,412 feature reads/operational taxonomic units (OTUs) were obtained. 
Finally, a total of 5,072 unique features were identified from all samples.

The diversity and richness of the microbial community of the studied samples were assessed. The alpha diver-
sity of the gut microbiome was calculated using Faith’s phylogenetic diversity and Pielou’s evenness. A significant 
difference (p = 0.049) in Pielou’s evenness was observed between the ND and HDT groups. No significant differ-
ences in the Faith phylogenetic diversity and Pielou’s evenness indices were observed for the other comparisons 

Figure 3.  Plots to visualize the DEGs between the groups. (a) The number of Differentially expressed genes 
between all groups. (b) The MA plots of DEGs between the ND and the HD groups. (c) The Volcano plots of 
DEGs between ND and HD groups. (d) The MA plots of DEGs between the HD and the HDT groups. (e) The 
Volcano plots of DEGs between HD and HDT groups. ND normal diet group, HD high energy intake group, 
HDT high energy intake with BG&SW supplements treatment group.

Figure 4.  Venn diagram and protein–protein network of DEGs. (a) Common DEG in between ND to HD and 
HD to HDT groups. (b) Protein–protein interaction network of all DEG found in the study. ND normal diet 
group, HD high energy intake group, HDT high energy intake with BG&SW supplements treatment group.
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between groups. However, a decrease in Faith’s phylogenetic diversity was observed when comparing the HD 
group to the ND group, and a further decline was observed in the HDT group when compared to the HD group 
(Supplement Fig. 1b). Beta diversity analysis using Bray–Curtis distance-based principal coordinate analysis 
revealed that each treatment group was clustered in a separate location, although the ND and HD groups had a 
region of overlap, with one sample from the HD group in a distant area (Fig. 6a). A similar clustering pattern was 
observed in the 3D graph generated from the Jaccard distance (Fig. 6b). No significant differences were observed 
in the permutational multivariate analysis of variance (PERMANOVA) between the groups.

Taxa differences among the groups. The taxonomy results were analyzed by generating bar plots and 
Krona plots to compare the significant taxa present in the gut microbiome of the different experimental groups 
(Supplementary Fig. 2). The most dominant phylum in all samples was Firmicutes. Other phyla, including Fuso-
bacteria, Bacteroidetes, and Actinobacteria, were prevalent in different samples. The LEfSe analysis identified 
the differences in community taxa between the ND and HD groups. In the analysis, the HD group (high energy 
intake diet) showed an increase in the members of class Clostridia, order Clostridiales, genus Catenibacterium, 
and genus Clostridium, and decreases in the family Helicobacteraceae, family Lactobacillaceae, order Campy-
lobacterales, class Epsilonproteobacteria, and genus Helicobacter (Fig. 7a,b). However, no changes in taxa were 
found between the HD and HDT groups based on the suggested cutoff  parameter59.

Discussion
Currently, the prevalence of overweight, obesity, and obesity-related metabolic dysfunction (ORMD) among 
dogs is elevated and is related to the presence of overweight and obesity in their  owners60,61. There was also a 
positive association between BCS and the frequency of snack intake, and the BCS of a dog was greater if the 
owner reported that the dog consumed more snacks.

In this study, transcriptomic changes related to feeding, i.e., optimal energy intake (ND) or high energy intake 
(HD), and BG + SW supplementation (HDT) were examined through comparative genomic analysis of the three 
groups (ND, HD, and HDT). The sample quality was good, as a high alignment rate (~ 95%) with the reference 
genome was obtained for every sample (Supplementary Table 2). Standard methods and software were used in the 
RNA-Seq analysis, including AfterQC, HISAT2, StringTie, iDEP 9.2, EdgeR, and DESeq2 to identify the DEGs 
among the  groups45,62–64. Pathway annotation of the DEGs yielded an interesting pattern; a total of 11 pathways 
that were found to be upregulated in the group administered the high energy diet were reversed/downregulated 
in the treated group (the group administered with black ginseng and silkworm). That is, 11 pathways (out of 16) 

Figure 5.  Quantitative expressions of obesity-related genes between the ND, HD, and HDT groups. * p < 0.05 
vs. ND. @ p < 0.05, @@ p < 0.01 vs. HD. ND normal diet group, HD high energy intake group, HDT high energy 
intake with BG&SW supplements treatment group. The blue lines expressed GeneCounts between groups.
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downregulated in the HDT group when compared to HD group were upregulated in the HD group when com-
pared to the ND group (Supplement Table 3). Based on the literature, most of these pathways (9/11), including 
the gonadotropin-releasing hormone receptor pathway (P06664), inflammation mediated by chemokine and 
cytokine signaling pathway (P00031), 5HT4 type receptor-mediated signaling pathway (P04376), Wnt signaling 
pathway (P00057), adrenaline and noradrenaline biosynthesis (P00001), 5HT3 type receptor-mediated signal-
ing pathway (P04375), 5HT2 receptor-mediated signaling pathway (P04374), 5HT1 type receptor-mediated 
signaling pathway (P04373), and dopamine receptor-mediated signaling pathway (P05912), may be related to 
 obesity65–69. These findings strongly suggest that these pathways/genes should be further examined to decipher 
the mechanism responsible for the anti-obesity properties of black ginseng and silkworm. Comparisons of ND 
with HD and HD with HDT were the most important to identify the DEGs related to the high-fat diet-induced 
obesity and the treatment. Four (NUGGC , EFR3B, RTP4, and ACAN) out of the six genes that were found to be 
downregulated in the HD group when compared to the ND group and were also upregulated in the HDT group 
when compared to the HD group were reported to be associated with obesity in earlier  studies70–73. Similarly, 
five genes (HOXC4, IL17RB, SOX13, SLC18A2, and SOX4) out of seven genes that were found to be upregulated 
in in the HD group when compared to the ND group and downregulated in the HDT group when compared to 
the HD group were previously shown to be associated with  obesity74–76. Among these obesity-associated genes, 

Figure 6.  Beta diversity plots. (a) 3-D plot depicting beta diversity through Bray Curtis distance which is a 
quantitative measure of the community dissimilarity. (b) 3-D plot depicting beta diversity through Jaccard 
distance which is a qualitative measure of the community dissimilarity. ND normal diet group, HD high energy 
intake group, HDT high energy intake with BG&SW supplements treatment group.

Figure 7.  Differential abundance of taxa in ND and HD groups. (a) Cladogram. (b) Bar plot depicting bacterial 
taxa according to LDA. ND normal diet group, HD high energy intake group.
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three genes (NUGGC , EFR3B, and SOX4) were found to be upregulated or downregulated according to the 
presence of obesity both in the literature and in the current  study70,71,77. Interestingly, one gene that corresponds 
to microRNA 451 (miR-451) was found to be downregulated in all three comparisons (ND-HD, ND-HDT, and 
HDT-HD) (Supplementary Table 3). In a previous study, miR-451 levels were higher in participants with non-
alcoholic fatty liver disease (NAFLD), which suggests a possible role for this gene in fat  metabolism78,79. The 
results of the current study strongly suggest that these genes are critical factors for obesity and could be useful 
target genes. Additionally, the results of the RT-PCR expression analysis of these nine essential genes (NUGGC 
, EFR3B, RTP4, ACAN, HOXC4, IL17RB, SOX13, SLC18A2, and SOX4) were similar to the RNA-Seq expression 
results (Fig. 5), which also validated the high-throughput RNA-Seq analysis.

The gut microbiome can be influenced by diet and can also predict traits such as  obesity80,81. Considering the 
importance of the microbiome in diet and obesity, the changes in the microbiome in the HD and HDT groups 
were studied through 16 s rRNA-based bacterial community analysis. The alpha diversity box plots showed that 
the gut microbiome diversity was decreased in dogs fed a high-energy diet. A further decrease in diversity was 
also observed with black ginseng and silkworm treatment (Supplementary Fig. 1). Although previous studies 
have also shown a decrease in diversity with a high-fat  diet82,83, more experiments with additional samples (cases) 
are required to confirm this association.

In the LDA-based analysis, expansion of the class Clostridia was observed in the HD group when compared 
to the ND group. A similar result was reported in a recent study of a mouse model in which the relative abun-
dance of Clostridia was higher in the HD group than the ND  group84. Furthermore, a reduction in the family 
Lactobacillaceae was observed in the HD group when compared to the ND group. Previous experiments have 
also reported a lower abundance of Lactobacillaceae in rats fed a high-fed  diet85. No significant differences in the 
occurrence of community taxa were observed between the HD group and the HDT group or between the ND 
group and the HDT group, which may be attributed to these results countering effect of the black ginseng and 
silkworm supplements against high-energy diet intake.

Although the study was carried out with three subjects/dogs in each group, as the possible triplicate statistical 
solid significance requires a large number of animals/subjects, therefore, we suggest that the limitation of small 
sample size, which can be pursued in the extended study in the near future with the more numbers of animals 
to produce highly reliable findings.

RNA-Seq analysis from adipose tissue can provide precise information about gene expression related to fat 
metabolism. It can be the sample of choice for the transcriptomic study associated with obesity. Nevertheless, 
in several studies in humans and mice, the gene expression of blood cells has been used in obesity/high-fat 
diet-induced obesity, and essential findings were  reported86–90. In the near future, we also proposed RNA-Seq 
or single-cell RNA-Seq analysis can be carried out using adipose tissue/cells to study transcriptomic changes in 
these cells/tissues according to diet.

In this study, we performed comparative transcriptomics and gut microbiome analysis of three groups: beagle 
dogs with optimal energy intake (ND), high energy intake (HD), and high energy intake and BG + SW supple-
ments (HDT). After 12 weeks of BG + SW supplementation, downregulation of critical factors for obesity and 
changes in the expression of some essential obesity-related genes were observed. A non-significant decrease in 
microbiome diversity was observed in the comparison of the HD and HDT groups and significant differences 
in the occurrence of some taxa in association with a high-fat diet were identified in the HD and ND groups.
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